Zeshan Khan | Artificial Intelligence| Best Researcher Award

Assoc. Prof. Dr. Zeshan Khan |Artificial Intelligence| Best Researcher Award

Associate Professor, National Yunlin University of Science and Technology, Taiwan

Dr. Zeshan Aslam Khan is an esteemed Associate Professor at the International Graduate School of Artificial Intelligence, National Yunlin University of Engineering Sciences and Technology. With a strong background in Artificial Intelligence, Image Analysis, and Recommender Systems, he has made significant contributions to academia and industry. As the Director of the PRISM Lab, he actively supervises cutting-edge AI research, fostering innovation in Smart Metering, Fingerprint Recognition, and Alzheimer’s Detection. His work is recognized globally, with prestigious awards, high-impact publications, and collaborations with leading research institutions in the UK, Ireland, Taiwan, and Pakistan. 🌍📚

Publication Profile

Scopus

🎓 Education

Dr. Khan holds a Ph.D. in Electronic Engineering (2020) with a specialization in Learning Machines for Recommender Systems. His academic journey includes an M.Sc. in Computer Systems Engineering from Halmstad University, Sweden (2010), and a B.Sc. in Computer Information Systems Engineering from UET Peshawar, Pakistan (2005). His extensive educational background has laid a strong foundation for his expertise in AI-driven systems and computational intelligence. 🎓🔬

💼 Experience

With over a decade of experience, Dr. Khan has established himself as a leading researcher and educator in Artificial Intelligence. He has served as a Visiting Researcher at the University of Birmingham (UK) and the University of Galway (Ireland). His industry collaborations include partnerships with the National Radio Telecommunication Corporation (NRTC), Pakistan, and the Future Technology Research Center, Taiwan. As an Associate Editor of the Journal of Innovative Technologies (JIT) and a reviewer for top-tier journals like IEEE Transactions on AI, he plays a crucial role in shaping AI research globally. 🌟🔍

🏆 Awards and Honors

Dr. Khan’s excellence in research and academia has been recognized through numerous accolades. He was awarded the prestigious Ph.D. Gold Medal (2020) and the Faculty Research Brilliance Award (2022). In 2023, he received the Productive Researcher Award for his outstanding publications and graduate supervisions. His work has also secured significant research grants, including the Pakistan Engineering Council (PEC) Grant and the Higher Education Commission (HEC) Grant, enabling advancements in AI and IoT applications. 🏅🔬

🔬 Research Focus

Dr. Khan’s research revolves around Artificial Intelligence, Image Classification/Segmentation, Recommender Systems, Embedded Systems, and Fractional Calculus. His groundbreaking work in explainable AI, fractional optimization, and chaotic heuristics has been widely published in high-impact Q1 journals. His innovative contributions include developing AI-powered solutions for healthcare, smart metering, and signature verification, bridging the gap between academia and industry through real-world applications. 🤖📈

📝 Conclusion

Dr. Zeshan Aslam Khan stands as a prominent figure in the field of Artificial Intelligence, with a profound impact on research, education, and industry collaborations. His dedication to AI-driven solutions, student mentorship, and high-impact publications solidifies his reputation as a leader in predictive intelligence and systems modeling. With a global research footprint and numerous accolades, he continues to drive technological advancements that shape the future of AI. 🌍🚀

📚 Publications 

Generalized fractional optimization-based explainable lightweight CNN model for malaria disease classificationComputers in Biology and Medicine, 2025 (Q1, IF: 7.0) [Link] 📖🔬

Fractional Gradient Optimized Explainable CNN for Alzheimer’s Disease DiagnosisHeliyon, 2024 (Q1, IF: 3.4) [Link] 🧠📊

Design of chaotic Young’s double slit experiment optimization heuristics for nonlinear muscle model identificationChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 🎯💡

A gazelle optimization expedition for key term separated fractional nonlinear systems applied to muscle modelingChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 📉⚙️

Generalized fractional strategy for recommender systems with chaotic ratings behaviorChaos, Solitons & Fractals, 2022 (Q1, IF: 5.3) [Link] ⭐🔍

Lianbo Ma | Artificial Intelligence | Best Researcher Award

Prof. Lianbo Ma | Artificial Intelligence | Best Researcher Award

Professor, Northeastern University, China

Dr. Lianbo Ma is a distinguished professor at Northeastern University, China, with expertise in computational intelligence, machine learning optimization, big data analysis, and natural language processing. With a Ph.D. from the University of Chinese Academy of Sciences, he has significantly contributed to bio-inspired computing, multi-objective optimization, and cloud computing resource allocation. As a prolific researcher, Dr. Ma has published over 90 papers in high-impact journals and conferences, earning global recognition for his work. His research has been widely cited, and he has received numerous prestigious awards, making him a key figure in artificial intelligence and optimization.

Publication Profile

Google Scholar

🎓 Education

Dr. Ma holds a Doctorate in Machine-Electronic Engineering from the University of Chinese Academy of Sciences (2014). He earned his Master’s degree (2007) and Bachelor’s degree (2004) in Information Science and Engineering from Northeastern University, China. His academic journey has provided a solid foundation in AI-driven optimization, neural networks, and computational intelligence.

💼 Experience

Dr. Ma has held various esteemed positions in academia and research institutions. Since 2017, he has been a professor at Northeastern University, China, specializing in software engineering and AI. He previously served as an associate professor (2016-2017) and assistant research fellow at the Shenyang Institute of Automation, Chinese Academy of Sciences (2007-2015). His international experience includes a visiting scholar position at Surrey University, UK (2019-2020), under the mentorship of Prof. Yaochu Jin. His extensive professional journey highlights his contributions to AI-driven industrial applications and large-scale optimization.

🏆 Awards and Honors

Dr. Ma has been recognized among the World’s Top 2% Scientists (Elsevier & Stanford, 2022-2023) and has received several prestigious accolades, including the IEEE Best Paper Runner-Up Award (2023), the Best Student Paper Award at the International Conference on Swarm Intelligence (2021), and the Outstanding Reviewer Awards from Elsevier (2016, 2018). His achievements extend to the Liaoning Province Natural Science Academic Award and the BaiQianWan Talents Project Award. His dedication to research and mentorship is further evident in his recognition as an Excellent Master’s Thesis Instructor.

🔬 Research Focus

Dr. Ma’s research spans computational intelligence, large-scale multi-objective optimization, and bio-inspired computing. His expertise extends to cloud computing, edge computing, and social network analysis, where he has worked on cloud resource allocation and influence maximization. He is also actively engaged in multi-modal data processing, focusing on knowledge graphs, entity extraction, and text mining. His research integrates AI with industrial applications, advancing neural architecture search and intelligent data analysis.

🔍 Conclusion

Dr. Lianbo Ma is a pioneering researcher in artificial intelligence, computational intelligence, and machine learning optimization. His contributions to big data analytics, neural architecture search, and evolutionary computation have positioned him as a leading figure in the field. With numerous accolades, high-impact publications, and extensive academic service, Dr. Ma continues to shape the future of AI-driven optimization and intelligent computing. 🚀

📖 Publications

A Hybrid Neural Architecture Search Algorithm Optimized via Lifespan Particle Swarm Optimization for Coal Mine Image Recognition

Truthful Combinatorial Double Auctions for Mobile Edge Computing in Industrial IoT. IEEE Transactions on Mobile Computing, 21(11), 4125-4138. DOI

Single-Domain Generalized Predictor for Neural Architecture Search System. IEEE Transactions on Computers. DOI

One-Step Forward and Backtrack: Overcoming Zig-Zagging in Loss-Aware Quantization Training. AAAI-24 Conference Proceedings.

Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation. DOI

An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-objective Optimization. IEEE Transactions on Cybernetics, 52(7), 6684-6696. DOI

Enhancing Learning Efficiency of Brain Storm Optimization via Orthogonal Learning Design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(11), 6723-6742. DOI

 

Carolina Magalhães | Machine Learning | Best Researcher Award

Dr. Carolina Magalhães | Machine Learning | Best Researcher Award

Investigadora, INEGI – Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial, Portugal

👩‍🔬 Carolina Magalhães is a dedicated biomedical engineer and PhD candidate with expertise in applying AI and imaging technologies to healthcare challenges. Based in Porto, Portugal, she combines her passion for modern technology with a problem-solving mindset to develop innovative solutions in skin cancer diagnostics. Carolina has worked collaboratively with clinical experts to bridge research and practical applications, contributing significantly to advancing imaging-based decision support systems.

Publication Profile

ORCID

Education

🎓 Carolina holds a PhD in Biomedical Engineering from the Faculdade de Engenharia da Universidade do Porto (2020–2024). She also completed her MSc in Biomedical Engineering at the same institution (2016–2018) and earned her Bachelor’s in Bioengineering – Biomedical Engineering from Universidade Católica Portuguesa (2013–2016).

Experience

💼 Carolina has a rich research background, currently serving as a Graduate Research Fellow at INEGI, focusing on skin lesion diagnosis using multispectral imaging. Her work spans from leveraging machine learning models for skin cancer classification to thermal and UV imaging techniques. Previously, she contributed to projects on hyperhidrosis diagnosis, prosthetic device design, and thermal image analysis for musculoskeletal disorders, collaborating with leading hospitals and research centers in Portugal.

Research Interests

🔬 Carolina is passionate about exploring artificial intelligence, machine learning, and advanced imaging technologies for healthcare applications. Her interests include developing multispectral imaging systems, improving diagnostic tools for skin cancer, and advancing infrared thermography for clinical support systems.

Awards

🏆 Carolina’s innovative work has been recognized with prestigious research grants from the Foundation for Science and Technology (SFRH/BD/144906/2019) and other funding organizations. These awards have supported her impactful contributions to biomedical engineering and healthcare innovation.

Publications

“Systematic Review of Deep Learning Techniques in Skin Cancer Detection”
BioMedInformatics, 11/2024
Read here

“Skin Cancer Image Classification with Artificial Intelligence Strategies: A Systematic Review”
Journal of Imaging, 10/2024
Read here

“Use of Infrared Thermography for Abdominoplasty Procedures in Patients with Extensive Subcostal Scars: A Preliminary Analysis”
Plast Reconstr Surg Glob Open, 06/2023
Read here

“Classic Versus Scarpa-Sparing Abdominoplasty: An Infrared Thermographic Comparative Analysis”
J Plast Reconstr Aesthet Surg, 06/2023
Read here

“Towards an Effective Imaging-Based Decision Support System for Skin Cancer”
Handbook of Research on Applied Intelligence for Health and Clinical Informatics, 10/2022
Read here

Dongbeom Kim | Artificial Intelligence | Best Researcher Award

Mr. Dongbeom Kim | Artificial Intelligence | Best Researcher Award

Master’s Student, University of Seoul, South Korea

Dongbeom Kim is a dedicated Master’s student at the University of Seoul, specializing in Geoinformatics under the mentorship of Professor Chulmin Jun. With a robust academic background in Geography and a passion for innovative research, Dongbeom is actively engaged in developing smart systems for urban planning and vehicle safety. His work spans advanced studies in fire evacuation simulations, the application of artificial intelligence in urban growth modeling, and the development of safe driving systems for two-wheeled vehicles. 📊🛵

Publication Profile

Strengths for the Award:

  1. Academic Background: Dongbeom Kim has a solid educational foundation in Geography and Geoinformatics, with high GPAs in both his undergraduate and current Master’s studies. His ongoing education in Geoinformatics at the University of Seoul under the guidance of a reputed advisor further strengthens his research credentials.
  2. Research Publications: He has authored several papers published in reputable SCIE/ESCI journals like Sensors and Applied Sciences, along with multiple domestic publications. His research spans various topics, including fire evacuation simulations, vehicle safety, and urban growth modeling, indicating a diverse research portfolio.
  3. Conferences and Presentations: Dongbeom Kim has actively presented his research at several international and national conferences, such as the 18th International Conference on Location Based Services in Belgium and the Korean Society for Geospatial Information Science. These experiences highlight his engagement with the academic community and his ability to communicate his research effectively.
  4. Patents and Innovation: He is a co-inventor on four patents related to vehicle safety and route generation, demonstrating innovation and practical application of his research.
  5. Research Projects: Participation in multiple research projects, including those focused on greenhouse gas emission reduction and environmental big data analysis, shows his capability to contribute to significant scientific endeavors.

Areas for Improvement:

  1. Research Leadership: While Dongbeom Kim has collaborated on numerous projects and publications, there is limited evidence of him taking on a leading role in these efforts. Demonstrating more leadership in research projects or publications could strengthen his profile.
  2. Diversity in Research Impact: Although his research covers a range of topics, the majority are closely related to vehicle safety and geospatial data analysis. Expanding his research to cover other areas of geoinformatics or interdisciplinary applications could enhance the breadth of his research impact.
  3. Published Impact Factor: As some of his research is still under review and the impact factors of the journals in which he has published are not mentioned, highlighting the impact factor or citation index of his published work could further substantiate his research quality.

 

Education

Dongbeom holds a Bachelor’s degree in Geography from Kongju National University (2015-2021), achieving a GPA of 3.9/4.5. He is currently pursuing a Master’s degree in Geoinformatics at the University of Seoul, where he has achieved an impressive GPA of 4.33/4.5. 🎓🌍

Experience

Dongbeom’s experience includes multiple research projects, focusing on geospatial information science, urban growth modeling, and traffic safety. He has contributed to several conferences and published numerous peer-reviewed articles in international journals. His practical skills are reinforced by his active involvement in projects such as the development of a good driving evaluation system for two-wheeled vehicles and environmental big data analysis. 🌐📝

Research Focus

Dongbeom’s research primarily revolves around geoinformatics, fire evacuation simulations, urban growth modeling, and traffic safety. He is particularly interested in utilizing sensor-based approaches and artificial intelligence techniques to address urban challenges and enhance public safety. 🚒🌆

Awards and Honors

Dongbeom has presented his work at prestigious international and domestic conferences and has collaborated on innovative projects that have received national attention. He is also recognized for his contributions to patents related to traffic safety and environmental management. 🏆🔬

Publication Top Notes

Under Review: Dongbeom Kim, Hyemin Kim, Yuhan Han, Chulmin Jun, “Fire Evacuation Simulation with Agent-Based Fire Recognition Propagation” (Physica Scripta, 2024)

Dongbeom Kim, Hyemin Kim, Suyun Lee, Qyoung Lee, Minwoo Lee, Jooyoung Lee, Chulmin Jun, “Design and Implementation of a Two-Wheeled Vehicle Safe Driving Evaluation System” (Sensors, 2024) – Cited by 2 articles

Dongbeom Kim, Hyemin Kim, Chulmin Jun, “The Detection of Aggressive Driving Patterns in Two-Wheeled Vehicles Using Sensor-Based Approaches” (Applied Sciences, 2023) – Cited by 3 articles

Minjun Kim, Dongbeom Kim, Daeyoung Jin, Geunhan Kim, “Application of Explainable Artificial Intelligence (XAI) in Urban Growth Modeling: A Case Study of Seoul Metropolitan Area, Korea” (Land, 2023) – Cited by 5 articles

Suyun Lee, Dongbeom Kim, Chulmin Jun, “Calculation of Dangerous Driving Index for Two-Wheeled Vehicles Using the Analytic Hierarchy Process” (Applied Sciences, 2023) – Cited by 1 article

Minjun Kim, Dongbeom Kim, Geunhan Kim, “Examining the Relationship between Land Use/Land Cover (LULC) and Land Surface Temperature (LST) Using Explainable Artificial Intelligence (XAI) Models: A Case Study of Seoul, South Korea” (International Journal of Environmental Research and Public Health, 2022) – Cited by 4 articles 📖🔗

Conclusion:

Dongbeom Kim appears to be a promising candidate for the “Best Researcher Award” due to his solid academic background, active research publication record, involvement in innovative patents, and participation in impactful research projects. To further strengthen his candidacy, he could focus on assuming leadership roles in his research, diversifying his research impact, and emphasizing the citation metrics of his work. Overall, his contributions to the field of geoinformatics and vehicle safety suggest he is a strong contender for this award.

Rahma Mani | Artificial Intelligence | Women Researcher Award

Ms. Rahma Mani | Artificial Intelligence | Women Researcher Award

PhD student, Escuela Técnica Superior de Ingeniería Informática, ETSII, Spain

Rahma Mani is a dedicated Ph.D. candidate in Electrical Engineering and Computer Science at the University of Seville, Spain, with a deep passion for wireless sensor networks, machine learning, and artificial intelligence. With a strong foundation in electrical engineering from the National Engineering School of Monastir, Tunisia, she has demonstrated her expertise through various academic and professional roles. Rahma has contributed to significant research projects and has a keen interest in innovative technologies.

Publication Profile

 

Strengths for the Award:

  1. Academic Excellence: Rahma is currently pursuing a Ph.D. in Electrical Engineering and Computer Science, focusing on cutting-edge fields such as wireless sensor networks, machine learning, and artificial intelligence. Her educational background is robust and well-aligned with emerging technological fields.
  2. Research Contributions: Rahma has multiple publications in reputable journals and conferences, including a submission to the prestigious Pervasive and Mobile Computing Journal by Elsevier. Her research in wireless sensor networks demonstrates innovation and contributes significantly to the field.
  3. Global Perspective: Rahma’s North African upbringing combined with her international academic and professional experiences in Spain, Italy, France, and Tunisia give her a unique global perspective. This diversity enhances her ability to approach problems from different angles, which is a valuable asset in research.
  4. Technical Skills: She possesses a wide range of digital and programming skills, including proficiency in languages like Java, C++, and MATLAB, as well as experience with technologies such as Vivado and Arduino. These skills are critical for her research and development work.
  5. Leadership and Innovation: Rahma demonstrated leadership in her role as the Electrical Committee leader in the ENIM TEAM, where she led the development of an electric car for an international competition. Her involvement in volunteer activities also highlights her leadership abilities and commitment to social causes.
  6. Language Proficiency: Fluent in English, Arabic, and French, with basic Spanish, Rahma’s multilingual capabilities are a significant asset in collaborative international research.

Areas for Improvement:

  1. Broader Research Exposure: While Rahma has a strong publication record, expanding her research impact by collaborating on interdisciplinary projects or participating in more international conferences could further enhance her profile.
  2. Advanced Certifications: Although Rahma has quality management certifications, pursuing advanced certifications related to her research areas (e.g., specialized AI or wireless communication certifications) could strengthen her expertise.
  3. Industry Collaboration: Increasing her engagement with industry partners, beyond internships, through joint research projects or consulting roles could provide practical applications for her research, enhancing its relevance and impact.

 

🎓 Education:

Rahma is currently pursuing her Ph.D. in Electrical Engineering and Computer Science at the University of Seville, Spain, specializing in wireless sensor networks, machine learning, and artificial intelligence. She earned her Electrical Engineering Diploma from the National Engineering School of Monastir, Tunisia, where she also led a team in designing and developing an electric car for an international competition. Rahma began her academic journey with preparatory engineering studies at the Preparatory Institute for Engineering Studies of Monastir, Tunisia.

💼 Experience:

Rahma has gained extensive experience as an adjunct professor at the Higher Institute of Applied Sciences and Technology of Mahdia, Tunisia, where she taught courses on digital signal processing, converters, and electrical machines. She also worked as a Junior Full Stack Engineer at HRDatabank Tunisia (WILL Group, Japan), contributing to the development of HR web applications. Additionally, Rahma has completed internships at Smart Sensors Systems (3S) in Nancy, France, and the Tunisian Electricity and Gas Company in Sousse, Tunisia.

🔬 Research Focus:

Rahma’s research focuses on wireless sensor networks, particularly in the areas of localization algorithms, edge computing, and FPGA-enhanced systems. She is passionate about applying machine learning and artificial intelligence techniques to improve the efficiency and reliability of sensor networks, especially in large-scale and industrial applications.

🏆 Awards and Honors:

Rahma received a merit-based fellowship to pursue her Ph.D. internship in Italy and Spain, recognizing her outstanding academic and research achievements.

📚 Publication Top Notes:

Localizing Unknown Nodes with an FPGA-Enhanced Edge Computing UAV in Wireless Sensor Networks: Implementation and Evaluation (2024)

Improved 3D localization algorithm for large-scale wireless sensor networks (2023).

Improved Distance vector-based Kalman Filter localization algorithm for wireless sensor network (2023) .

CRT-LoRa: An efficient and reliable MAC scheme for real-time industrial applications (2023).

Improved Least-Square DV-Hop Algorithm for Localization in Large Scale Wireless Sensor Network (2022) .

 

Conclusion:

Rahma Mani is a well-qualified candidate for the Research for Women Researcher Award. Her solid academic background, impressive research contributions, technical expertise, and leadership qualities make her a strong contender. With continued focus on expanding her research impact and industry collaborations, she is likely to make significant contributions to the field of Electrical Engineering and Computer Science, particularly in the areas of wireless sensor networks and AI. Her application for the award would be well-justified, showcasing both her achievements and potential for future advancements.

 

 

Hesham A. Sakr | Artificial Intelligence | Best researcher award

Assist Prof Dr. Hesham A. Sakr | Artificial Intelligence | Best researcher award

Assistant professor, Assistant professor -Nile higher institute of engineering and technology -Mansoura -Egypt

📡 Hesham Ali Sakr is an Assistant Professor and Researcher specializing in Communication Networks and Cybersecurity. He earned his Ph.D. in Electrical, Electronics, and Communications Engineering from Mansoura University, Egypt. Dr. Sakr’s research focuses on optimizing wireless technologies for multimedia services, VoIP systems, and LTE-A networks. His contributions to the field are recognized through multiple publications in prestigious journals. He is actively involved in advancing the state-of-the-art in 5G and beyond communication technologies.

Profile

Google Scholar

 

Education

🎓 Ph.D. in Electrical, Electronics, and Communications Engineering
Mansoura University, Egypt (June 2016 – April 2020)
Thesis: Development of Accessing Multimedia Services over Wireless Technologies
GPA: 3.55/4

🎓 M.Sc. in Electrical, Electronics, and Communications Engineering
Mansoura University, Egypt (June 2010 – September 2014)
Thesis: Development of VoIP Systems using MPLS
GPA: 3.6/4

🎓 B.Sc. in Networks and Communications Engineering
Higher Technological Institute of Engineering, 10th of Ramadan, Egypt (September 2004 – August 2009)
Excellent with Honor Degree (84.9%)
Graduation Project Grade: Excellent

Experience

Specializing in Communication Networks and Cybersecurity, Dr. Sakr has significant academic and research experience. His work primarily focuses on enhancing wireless communication technologies, particularly in the realms of 5G and multimedia services. He has been affiliated with Mansoura University, contributing to various research projects and publications.

Research Interests

Dr. Sakr’s research interests encompass Communication Networks, Cybersecurity, and the development of efficient multimedia services over wireless technologies. His work includes performance evaluation of HARQ mechanisms, IPv6 multimedia management, and power-efficient mechanisms for LTE-A networks. He is particularly focused on optimizing handover management in LTE-A networks and evaluating VoIP versus VoMPLS performance.

Awards

Dr. Hesham Ali Sakr has been recognized for his outstanding contributions to the field of Communication Networks and Cybersecurity. His research achievements and academic excellence have earned him a commendable reputation among peers and colleagues in the industry.

Publications

📚 H.A. Sakr, and M.A. Mohamed, “Performance Evaluation Using Smart: HARQ Versus HARQ Mechanisms Beyond 5G Networks,” Wireless. Pers. Communication (Springer), June 2019. Cited by 26 articles

📚 Abeer Twakol Khalil, A. I. Abdel-Fatah and Hesham Ali Sakr, “Rapidly IPv6 multimedia management schemes based LTE-A wireless networks,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 4, 2018. Cited by 32 articles

📚 H. A. Sakr, A. I. Abdel-Fatah, A. T. Khalil, “Performance Evaluation of Power Efficient Mechanisms on Multimedia over LTE-A Networks,” International Journal on Advanced Science, Engineering and Information Technology (IJASEIT), vol. 9, no. 4, 2019. Cited by 18 articles

📚 H.A. Sakr and M.A. Mohamed, “Handover Management Optimization over LTE-A Network using S1 and X2 handover,” Proc. of The Seventh International Conference on Advances in Computing, Electronics and Communication – ACEC 2018, 2018. Cited by 15 articles

📚 M. Abdel-Azim, M., Awad, M. M., & Sakr, H. A., “VoIP versus VoMPLS Performance Evaluation,” International Journal of Computer Science Issues (IJCSI), 11(1), 2014. Cited by 20 articles

Lourdes Swentek | Artificial Intelligence | Best Researcher Award

Assist Prof Dr. Lourdes Swentek | Artificial Intelligence | Best Researcher Award

Academician/Research Scholar, UCI, United States

Dr. Lourdes Swentek is a highly accomplished trauma and critical care surgeon with extensive experience in surgical research and education. She completed her fellowship in Critical Care at the University of California, Irvine, and her residency in Surgery at Loma Linda University Health. Dr. Swentek has been recognized for her outstanding contributions to trauma and acute care surgery, earning numerous awards and accolades throughout her career. Her research interests focus on islet transplantation, oxidative stress in pancreatitis, and innovative surgical techniques.

Profile

Scopus

 

Education

🎓 Dr. Lourdes Swentek completed her Critical Care fellowship at the University of California, Irvine, and her Surgical Residency at Loma Linda University Health. She also served as a Research Resident in the Department of Surgery at the University of California, Irvine, where she focused on islet transplantation.

Experience

🔬 Dr. Lourdes Swentek’s professional journey includes a fellowship in Critical Care at the University of California, Irvine, and a surgical residency at Loma Linda University Health. She has significant research experience in islet transplantation and surgical innovation, having contributed to several impactful research projects and publications.

Research Interests

🧪 Dr. Lourdes Swentek’s research interests encompass islet transplantation, oxidative stress in pancreatitis, and the development of novel surgical techniques. Her work has contributed to advancing knowledge and improving practices in these areas, making a notable impact on the field of trauma and critical care surgery.

Awards

🏆 Dr. Lourdes Swentek has received numerous awards, including the East Oriens Award for her career in Trauma and Acute Care Surgery in 2018, the Highest Resident Absite Score at Loma Linda University Health in 2017, and the UCI School of Medicine Achievement Award for Clinical Science Lecturer in 2022. These accolades reflect her dedication and excellence in her field.

Publications

The Addition of a Nurse Practitioner to an Inpatient Surgical Team Results in Improved Utilization of Resources

Medium and Long-term Outcomes after Pneumatic Dilation or Laparoscopic Heller Myotomy for Achalasia: A Meta-analysis

Presentation, Diagnosis, and Treatment of Oesophageal Motility Disorders

Role of Oxidative Stress in the Pathogenesis of Pancreatitis: Effect of Antioxidant Therapy

Total Pancreatectomy and Islet Auto Transplantation for Chronic Pancreatitis