Dr. Uddalak Mitra | Machine learning | Best Researcher Award

Dr. Uddalak Mitra | Machine learning | Best Researcher Award

Assistant Professor, JIS College of Engineering, India

Dr. Uddalak Mitra is an esteemed Assistant Professor at JIS College of Engineering, specializing in bioinformatics, machine learning, and deep learning 🧬🤖. With a strong academic foundation and a passion for research, he has significantly contributed to the intersection of computational intelligence and biological sciences. His expertise lies in decoding DNA, RNA, and protein sequences using cutting-edge AI techniques, paving the way for advancements in healthcare and genomics. Dr. Mitra’s work seamlessly blends theoretical knowledge with real-world applications, making impactful strides in both academia and industry.

Publication Profile

Google Scholar

🎓 Education:

Dr. Mitra has built a solid academic background in computational sciences, equipping himself with the expertise required to address complex biological challenges. His educational journey has provided him with the technical prowess to integrate artificial intelligence into biomedical research.

💼 Experience:

As an Assistant Professor at JIS College of Engineering, Dr. Mitra actively engages in research and mentoring, shaping the next generation of scientists. His work focuses on applying machine learning models to analyze biological data, improving early disease detection methodologies. Additionally, he has authored several research papers and contributed to the academic community through his innovative studies.

🏆 Awards and Honors:

Dr. Mitra has made commendable contributions to scientific research, earning recognition for his published works. He holds 9 patents, showcasing his dedication to innovation. His memberships in esteemed organizations like IFERP and ISTE reflect his commitment to professional development and research excellence.

🔬 Research Focus:

His research primarily revolves around bioinformatics, machine learning, and deep learning. He explores information-theoretic tools for biological sequence analysis, integrating artificial intelligence to derive meaningful insights from genomic data. His recent studies focus on clinical applications of AI, particularly in disease diagnosis and personalized medicine.

🔍 Conclusion:

Dr. Uddalak Mitra is a pioneering researcher dedicated to bridging the gap between bioinformatics and artificial intelligence. His contributions to genomic research, coupled with his expertise in AI-driven disease diagnosis, make him a valuable asset to the scientific community. With a strong foundation in computational biology, he continues to push the boundaries of research, striving for innovations that benefit both medicine and technology.

📚 Publications:

Leveraging AI and Machine Learning for Next-Generation Clinical Decision Support Systems (CDSS) – Published in AI-Driven Innovation in Healthcare Data Analytics, 2025.

Cognitive Handwriting Insights for Alzheimer’s Diagnosis: A Hybrid FrameworkInformation, 2025

Integrated System for Disease Detection Using Semiconductor-Based Gas Sensors and AI/MLIN Patent A61B0005080000, 2025

Significance of AI/ML Wearable Technologies for Education and TeachingWearable Devices and Smart Technology for Educational Teaching Assistance, 2025

Integrating AI/ML With Wearable Devices for Monitoring Student Mental HealthWearable Devices and Smart Technology for Educational Teaching Assistance, 2025

The Evolution of Entrepreneurship in the Age of AIAdvanced Intelligence Systems and Innovation in Entrepreneurship, 2024

A Novel Algorithm for Genomic STR Mining: Application to Phylogeny Reconstruction and Taxa IdentificationInternational Journal of Bioinformatics Research and Applications, 2024

Zeshan Khan | Artificial Intelligence| Best Researcher Award

Assoc. Prof. Dr. Zeshan Khan |Artificial Intelligence| Best Researcher Award

Associate Professor, National Yunlin University of Science and Technology, Taiwan

Dr. Zeshan Aslam Khan is an esteemed Associate Professor at the International Graduate School of Artificial Intelligence, National Yunlin University of Engineering Sciences and Technology. With a strong background in Artificial Intelligence, Image Analysis, and Recommender Systems, he has made significant contributions to academia and industry. As the Director of the PRISM Lab, he actively supervises cutting-edge AI research, fostering innovation in Smart Metering, Fingerprint Recognition, and Alzheimer’s Detection. His work is recognized globally, with prestigious awards, high-impact publications, and collaborations with leading research institutions in the UK, Ireland, Taiwan, and Pakistan. 🌍📚

Publication Profile

Scopus

🎓 Education

Dr. Khan holds a Ph.D. in Electronic Engineering (2020) with a specialization in Learning Machines for Recommender Systems. His academic journey includes an M.Sc. in Computer Systems Engineering from Halmstad University, Sweden (2010), and a B.Sc. in Computer Information Systems Engineering from UET Peshawar, Pakistan (2005). His extensive educational background has laid a strong foundation for his expertise in AI-driven systems and computational intelligence. 🎓🔬

💼 Experience

With over a decade of experience, Dr. Khan has established himself as a leading researcher and educator in Artificial Intelligence. He has served as a Visiting Researcher at the University of Birmingham (UK) and the University of Galway (Ireland). His industry collaborations include partnerships with the National Radio Telecommunication Corporation (NRTC), Pakistan, and the Future Technology Research Center, Taiwan. As an Associate Editor of the Journal of Innovative Technologies (JIT) and a reviewer for top-tier journals like IEEE Transactions on AI, he plays a crucial role in shaping AI research globally. 🌟🔍

🏆 Awards and Honors

Dr. Khan’s excellence in research and academia has been recognized through numerous accolades. He was awarded the prestigious Ph.D. Gold Medal (2020) and the Faculty Research Brilliance Award (2022). In 2023, he received the Productive Researcher Award for his outstanding publications and graduate supervisions. His work has also secured significant research grants, including the Pakistan Engineering Council (PEC) Grant and the Higher Education Commission (HEC) Grant, enabling advancements in AI and IoT applications. 🏅🔬

🔬 Research Focus

Dr. Khan’s research revolves around Artificial Intelligence, Image Classification/Segmentation, Recommender Systems, Embedded Systems, and Fractional Calculus. His groundbreaking work in explainable AI, fractional optimization, and chaotic heuristics has been widely published in high-impact Q1 journals. His innovative contributions include developing AI-powered solutions for healthcare, smart metering, and signature verification, bridging the gap between academia and industry through real-world applications. 🤖📈

📝 Conclusion

Dr. Zeshan Aslam Khan stands as a prominent figure in the field of Artificial Intelligence, with a profound impact on research, education, and industry collaborations. His dedication to AI-driven solutions, student mentorship, and high-impact publications solidifies his reputation as a leader in predictive intelligence and systems modeling. With a global research footprint and numerous accolades, he continues to drive technological advancements that shape the future of AI. 🌍🚀

📚 Publications 

Generalized fractional optimization-based explainable lightweight CNN model for malaria disease classificationComputers in Biology and Medicine, 2025 (Q1, IF: 7.0) [Link] 📖🔬

Fractional Gradient Optimized Explainable CNN for Alzheimer’s Disease DiagnosisHeliyon, 2024 (Q1, IF: 3.4) [Link] 🧠📊

Design of chaotic Young’s double slit experiment optimization heuristics for nonlinear muscle model identificationChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 🎯💡

A gazelle optimization expedition for key term separated fractional nonlinear systems applied to muscle modelingChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 📉⚙️

Generalized fractional strategy for recommender systems with chaotic ratings behaviorChaos, Solitons & Fractals, 2022 (Q1, IF: 5.3) [Link] ⭐🔍

Lianbo Ma | Artificial Intelligence | Best Researcher Award

Prof. Lianbo Ma | Artificial Intelligence | Best Researcher Award

Professor, Northeastern University, China

Dr. Lianbo Ma is a distinguished professor at Northeastern University, China, with expertise in computational intelligence, machine learning optimization, big data analysis, and natural language processing. With a Ph.D. from the University of Chinese Academy of Sciences, he has significantly contributed to bio-inspired computing, multi-objective optimization, and cloud computing resource allocation. As a prolific researcher, Dr. Ma has published over 90 papers in high-impact journals and conferences, earning global recognition for his work. His research has been widely cited, and he has received numerous prestigious awards, making him a key figure in artificial intelligence and optimization.

Publication Profile

Google Scholar

🎓 Education

Dr. Ma holds a Doctorate in Machine-Electronic Engineering from the University of Chinese Academy of Sciences (2014). He earned his Master’s degree (2007) and Bachelor’s degree (2004) in Information Science and Engineering from Northeastern University, China. His academic journey has provided a solid foundation in AI-driven optimization, neural networks, and computational intelligence.

💼 Experience

Dr. Ma has held various esteemed positions in academia and research institutions. Since 2017, he has been a professor at Northeastern University, China, specializing in software engineering and AI. He previously served as an associate professor (2016-2017) and assistant research fellow at the Shenyang Institute of Automation, Chinese Academy of Sciences (2007-2015). His international experience includes a visiting scholar position at Surrey University, UK (2019-2020), under the mentorship of Prof. Yaochu Jin. His extensive professional journey highlights his contributions to AI-driven industrial applications and large-scale optimization.

🏆 Awards and Honors

Dr. Ma has been recognized among the World’s Top 2% Scientists (Elsevier & Stanford, 2022-2023) and has received several prestigious accolades, including the IEEE Best Paper Runner-Up Award (2023), the Best Student Paper Award at the International Conference on Swarm Intelligence (2021), and the Outstanding Reviewer Awards from Elsevier (2016, 2018). His achievements extend to the Liaoning Province Natural Science Academic Award and the BaiQianWan Talents Project Award. His dedication to research and mentorship is further evident in his recognition as an Excellent Master’s Thesis Instructor.

🔬 Research Focus

Dr. Ma’s research spans computational intelligence, large-scale multi-objective optimization, and bio-inspired computing. His expertise extends to cloud computing, edge computing, and social network analysis, where he has worked on cloud resource allocation and influence maximization. He is also actively engaged in multi-modal data processing, focusing on knowledge graphs, entity extraction, and text mining. His research integrates AI with industrial applications, advancing neural architecture search and intelligent data analysis.

🔍 Conclusion

Dr. Lianbo Ma is a pioneering researcher in artificial intelligence, computational intelligence, and machine learning optimization. His contributions to big data analytics, neural architecture search, and evolutionary computation have positioned him as a leading figure in the field. With numerous accolades, high-impact publications, and extensive academic service, Dr. Ma continues to shape the future of AI-driven optimization and intelligent computing. 🚀

📖 Publications

A Hybrid Neural Architecture Search Algorithm Optimized via Lifespan Particle Swarm Optimization for Coal Mine Image Recognition

Truthful Combinatorial Double Auctions for Mobile Edge Computing in Industrial IoT. IEEE Transactions on Mobile Computing, 21(11), 4125-4138. DOI

Single-Domain Generalized Predictor for Neural Architecture Search System. IEEE Transactions on Computers. DOI

One-Step Forward and Backtrack: Overcoming Zig-Zagging in Loss-Aware Quantization Training. AAAI-24 Conference Proceedings.

Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation. DOI

An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-objective Optimization. IEEE Transactions on Cybernetics, 52(7), 6684-6696. DOI

Enhancing Learning Efficiency of Brain Storm Optimization via Orthogonal Learning Design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(11), 6723-6742. DOI

 

Huan Zhao | Machine Learning | Best Researcher Award

Assoc. Prof. Dr . Huan Zhao | Machine Learning | Best Researcher Award

Associate Professor, School of Aeronautics, Northwestern Polytechnical University, China

Huan Zhao is an associate professor at the School of Aeronautics, Northwestern Polytechnical University (NPU), China. He specializes in aerodynamics, multidisciplinary design optimization, uncertainty quantification, and machine learning, focusing on CFD simulation, AI-based global optimization, and surrogate modeling. He is also the executive deputy director of the Institute of Digital Intelligence for Flight Mechanics and Aerodynamic Design (IDIFMAD). Zhao has made significant contributions to the fields of aerodynamic shape optimization, high-dimensional global optimization, and uncertainty-based robust design. He holds several patents and has authored many high-impact publications. 🌐✈️

Publication Profile

Education

Huan Zhao completed his Ph.D. in Fluid Dynamics at Northwestern Polytechnical University (NPU) in 2020, following a B.Eng. in Aircraft Design and Engineering from the same university in 2014. 📚🎓

Experience

Zhao served as a tenure-track assistant professor at Sun Yat-sen University (SYSU) before joining NPU as a tenure-track associate professor in 2023. He has directed and participated in numerous research projects focusing on aerodynamic design optimization, high-speed rotor airfoil design, and surrogate-assisted design techniques. He is a principal investigator (PI) for multiple projects funded by the National Natural Science Foundation of China (NSFC). 👨‍🏫🔬

Awards and Honors

Huan Zhao has received several awards and honors, including recognition as part of the “Hundred Talents Plan” Young Academic Backbone at SYSU and multiple patents for his innovative contributions to aerodynamic design. 🏆🎖️

Research Focus

Zhao’s research interests lie in aerodynamics, including multi-fidelity polynomial chaos-Kriging models, aerodynamic shape optimization, and uncertainty quantification. His work has contributed significantly to the design and optimization of high-lift airfoils, laminar flow airfoils, and robust design methods under uncertainty. His expertise also includes machine learning, AI-based global optimization, and the application of surrogate models in complex design scenarios. 🔍🧑‍💻

Conclusion

Huan Zhao’s innovative work has had a profound impact on the field of aerodynamics and optimization. His research has not only advanced the understanding of aerodynamic design but has also led to practical improvements in the development of high-performance aircraft and related technologies. He continues to drive forward cutting-edge research in aerodynamics and multidisciplinary design optimization. 🚀🌍

Publications

An efficient adaptive forward–backward selection method for sparse polynomial chaos expansion, Computer Methods in Applied Mechanics and Engineering, 2019.

Review of robust aerodynamic design optimization for air vehicles, Archives of Computational Methods in Engineering, 2019.

Effective robust design of high lift NLF airfoil under multi-parameter uncertainty, Aerospace Science and Technology, 2017.

Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data, Structural and Multidisciplinary Optimization, 2021.

Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles, Engineering Computations, 2019.

 Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model, Computers & Fluids, 2022.

Research on efficient robust aerodynamic design optimization method of high-speed and high-lift NLF airfoil, Acta Aeronautica et Astronautica Sinica, 2021.

Research on Novel High-Dimensional Surrogate Model-Based Aerodynamic Shape Design Optimization, Acta Aeronautica et Astronautica Sinica, 2022.

Research on novel multi-fidelity surrogate model assisted many-objective global optimization method, Acta Aeronautica et Astronautica Sinica, 2022.

Adaptive multi-fidelity polynomial chaos-Kriging model-based efficient aerodynamic design optimization method, Chinese Journal of Theoretical and Applied Mechanics, 2023.

 

Deekshitha Kosaraju | Artificial Intelligence Award | Best Researcher Award

Ms. Deekshitha Kosaraju | Artificial Intelligence Award | Best Researcher Award

LIMS Junior Developer, ALS Group USA, Corp., United States

Deekshitha Kosaraju is an accomplished Computer Science graduate from The University of Texas at Dallas, with a strong academic foundation and technical expertise in a variety of programming languages, frameworks, and cloud technologies. Her expertise spans Java, Python, JavaScript, and R, among others. Deekshitha is currently working as a Junior Developer at ALS Group USA, where she focuses on improving data integration and system efficiency. She is passionate about cloud computing, machine learning, and AI, and has published several papers on cutting-edge AI techniques, including explainable AI and quantum computing integration. 🎓👩‍💻📚

Publication Profile

Google Scholar

Education

Deekshitha Kosaraju graduated with a Bachelor of Science in Computer Science from The University of Texas at Dallas, maintaining a GPA of 3.6/4.0. During her time at university, she was honored with the Academic Excellence Scholarship. Her coursework included a wide range of subjects such as Data Structures, Machine Learning, Software Engineering, and Operating Systems. 🎓🏆

Experience

Deekshitha has gained invaluable professional experience through internships and full-time roles. Currently, she works as a Junior Developer at ALS Group USA, where she contributes to streamlining workflows, automating processes, and improving data transfer efficiency. She has previously interned at Radiant Digital, where she worked on low-code platforms and developed mobile applications that enhanced field coordination. In addition, her experience at Pearson as a Software Engineer Intern allowed her to improve user engagement and business outcomes through AI-driven applications. 💼💻

Awards and Honors

Deekshitha was awarded the Academic Excellence Scholarship during her time at The University of Texas at Dallas. Her achievements in academic and professional arenas reflect her dedication to excellence and innovation in the field of computer science. 🌟🏅

Research Focus

Deekshitha’s research primarily focuses on Artificial Intelligence, with specific attention to explainable AI, zero-shot learning, meta-learning, reinforcement learning, and AI’s integration with cloud computing and quantum technologies. She is also interested in exploring the applications of AI in various domains, such as healthcare and data analytics. Her research contributions include exploring how AI can enhance big data analytics and cloud computing innovations. 🤖📊

Conclusion

With a diverse set of technical skills and a passion for advancing AI and cloud technologies, Deekshitha Kosaraju continues to make impactful contributions to the field of Computer Science. She remains committed to expanding her knowledge in AI and exploring innovative solutions to real-world problems. 🌐🚀

Publications :

Shedding light on AI: exploring explainable AI techniques
International Journal of Research and Review, 2020
Read Article

Zero-Shot learning: teaching AI to understand the unknown
International Journal of Research and Review, 2021
DOI: 10.52403/ijrr.20211161

How meta learning enhances reinforcement learning in AI
Galore International Journal of Applied Sciences & Humanities, 2021
DOI: 10.52403/gijash.20210706

Crossing domains: the role of transfer learning in rapid AI prototyping and deployment
International Journal of Science & Healthcare Research, 2021
DOI: 10.52403/ijshr.20210464

Artificial intelligence in cloud computing: enhancements and innovations
Galore International Journal of Applied Sciences & Humanities, 2021
DOI: 10.52403/gijash.20211010

Quantum computing and artificial intelligence: a fusion poised to transform technology
International Journal of Research and Review, 2021
DOI: 10.52403/ijrr.20210974

The role of artificial intelligence in enhancing big data analytics
Galore International Journal of Applied Sciences and Humanities, 2021

sajjad qureshi | Artificial Intelligence Award | Computer Vision Contribution Award

Dr. sajjad qureshi | artificial intelligence award | Computer Vision Contribution Award

deputy Director (IT), multan electric power company, Pakistan

📘 Dr. Sajjad Hussain Qureshi is a seasoned professional with over 21 years of experience in Information Technology. Currently serving as the Deputy Director (IT) at Multan Electric Power Company for the past two decades, Dr. Qureshi has established expertise in system analysis and design, machine learning, cybersecurity, IT auditing, and project management. His multidisciplinary educational background, including a Ph.D. in Computer Science, Ph.D. in Agriculture, and an MBA in Human Resource Management, has enabled him to excel in IT-based quality assurance, data analysis, and human resource management. He is passionate about utilizing cutting-edge technologies to create impactful solutions in diverse domains.

Publication Profile

ORCID

Education

🎓 Dr. Qureshi holds a Ph.D. in Computer Science, a Ph.D. in Agriculture, and an MBA in Human Resource Management. His diverse academic achievements reflect his commitment to integrating IT with interdisciplinary knowledge for impactful research and practical solutions.

Experience

💼 Dr. Qureshi has an extensive career spanning over 21 years in the IT field. For the last 20 years, he has been a cornerstone of the Multan Electric Power Company, where he serves as the Deputy Director (IT). His experience covers IT infrastructure development, LAN networks, client/server environments, cybersecurity, and customer billing systems. He also excels in IT-based quality assurance and control, project management, and data management.

Research Interests

🔍 Dr. Qureshi’s research interests lie at the intersection of machine learning, deep learning, cybersecurity, data management, and agriculture technology. He is particularly interested in applying advanced computational techniques to solve real-world problems, such as disease detection in crops and classification of linguistic data.

Awards

🏆 Dr. Qureshi has been recognized for his contributions to IT and interdisciplinary research, achieving notable academic and professional milestones. His work continues to inspire innovation and collaboration across diverse fields.

Publications

Classification of English Words into Grammatical Notations Using Deep Learning Technique (2024)
Imran, M., Qureshi, S. H., Qureshi, A. H., & Almusharraf, N.
Published in Information, 15(12), 801.
DOI: 10.3390/info15120801

Rational Study Of The Use Of Computer-Aided Softwares By The Composers (2024)
Qureshi, S. H., Javaid, S., & Javaid, M. A.
Published in Pakistan Journal of Society, Education and Language, 10(2), 213–219.

Comparison of Conventional and Computer-Based Detection of Severity Scales of Stalk Rot Disease in Maize (2024)
Qureshi, S.H., Khan, D.M., Razzaq, A., Baig, M.M., & Bukhari, S.Z.A.
Published in SABRAO Journal of Breeding and Genetics, 56(1), 292–301.
DOI: 10.54910/sabrao2024.56.1.26

Intelligent Resistant Source Detection Against Stalk Rot Disease of Maize Using Deep Learning Technique (2023)
Qureshi, S.H., Khan, D.M., & Bukhari, S.Z.
Published in SABRAO Journal of Breeding and Genetics, 55(6), 1972–1983.

Lukas Petersson | Artificial Intelligence | Best Researcher Award

Mr. Lukas Petersson | Artificial Intelligence | Best Researcher Award

Founder, Vectorview, United States

Lukas Petersson is a passionate AI and robotics researcher, currently serving as the CTO and Co-founder of Vectorview in San Francisco. With a strong background in software engineering, machine learning, and robotics, Lukas has contributed significantly to AI safety evaluations for major labs such as Anthropic. He has a track record of successful funding, securing $2.2M in capital, and conducting groundbreaking research on agentic capabilities of LLMs. 🌟🤖💡

Publication Profile

Google Scholar

Education:

Lukas is pursuing his M.Sc. and B.Sc. in Engineering Physics and Engineering Mathematics at Lund University, where he has achieved an impressive GPA of 4.9/5 and 5.0/5. He also spent a year at ETH Zurich focusing on Machine Learning and Robotics. 🎓📚

Experience:

Lukas has gathered diverse experience across top organizations such as Google, Disney Research, CommaAI, and the European Space Agency. He has contributed to AI research, robotics, and autonomy engineering, with notable achievements like developing RL algorithms for social robotic interaction and automating data analysis at Google. He has also been part of impactful projects like the viral robot developed at Disney Research. 🏢🧑‍💻🚀

Research Interests:

Lukas’s research interests lie at the intersection of AI Safety, Machine Learning, Robotics, and Autonomous Systems. His work focuses on improving agentic capabilities of large language models (LLMs) and exploring the application of Reinforcement Learning (RL) for social robots. 🤖🔬🌍

Awards:

Lukas’s work has been recognized in the fields of robotics and AI, contributing to significant advancements in safety and performance. He has excelled in competitive programming and autonomous vehicle development, receiving awards and recognition for his innovative approach to solving real-world challenges. 🏆🌟

Publications:

“Taming the Machine” (2023): Contributed research on AI Safety for a book discussing the future of machine learning and its societal impacts. 📚🧠

“MBSE” (2021): Published and presented a paper on Model-Based Systems Engineering at a conference, focusing on advanced methodologies in systems engineering. 📄🔧

 

Carolina Magalhães | Machine Learning | Best Researcher Award

Dr. Carolina Magalhães | Machine Learning | Best Researcher Award

Investigadora, INEGI – Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial, Portugal

👩‍🔬 Carolina Magalhães is a dedicated biomedical engineer and PhD candidate with expertise in applying AI and imaging technologies to healthcare challenges. Based in Porto, Portugal, she combines her passion for modern technology with a problem-solving mindset to develop innovative solutions in skin cancer diagnostics. Carolina has worked collaboratively with clinical experts to bridge research and practical applications, contributing significantly to advancing imaging-based decision support systems.

Publication Profile

ORCID

Education

🎓 Carolina holds a PhD in Biomedical Engineering from the Faculdade de Engenharia da Universidade do Porto (2020–2024). She also completed her MSc in Biomedical Engineering at the same institution (2016–2018) and earned her Bachelor’s in Bioengineering – Biomedical Engineering from Universidade Católica Portuguesa (2013–2016).

Experience

💼 Carolina has a rich research background, currently serving as a Graduate Research Fellow at INEGI, focusing on skin lesion diagnosis using multispectral imaging. Her work spans from leveraging machine learning models for skin cancer classification to thermal and UV imaging techniques. Previously, she contributed to projects on hyperhidrosis diagnosis, prosthetic device design, and thermal image analysis for musculoskeletal disorders, collaborating with leading hospitals and research centers in Portugal.

Research Interests

🔬 Carolina is passionate about exploring artificial intelligence, machine learning, and advanced imaging technologies for healthcare applications. Her interests include developing multispectral imaging systems, improving diagnostic tools for skin cancer, and advancing infrared thermography for clinical support systems.

Awards

🏆 Carolina’s innovative work has been recognized with prestigious research grants from the Foundation for Science and Technology (SFRH/BD/144906/2019) and other funding organizations. These awards have supported her impactful contributions to biomedical engineering and healthcare innovation.

Publications

“Systematic Review of Deep Learning Techniques in Skin Cancer Detection”
BioMedInformatics, 11/2024
Read here

“Skin Cancer Image Classification with Artificial Intelligence Strategies: A Systematic Review”
Journal of Imaging, 10/2024
Read here

“Use of Infrared Thermography for Abdominoplasty Procedures in Patients with Extensive Subcostal Scars: A Preliminary Analysis”
Plast Reconstr Surg Glob Open, 06/2023
Read here

“Classic Versus Scarpa-Sparing Abdominoplasty: An Infrared Thermographic Comparative Analysis”
J Plast Reconstr Aesthet Surg, 06/2023
Read here

“Towards an Effective Imaging-Based Decision Support System for Skin Cancer”
Handbook of Research on Applied Intelligence for Health and Clinical Informatics, 10/2022
Read here

Sara Tehsin | Deep learning | Best Researcher Award

Ms. Sara Tehsin | Deep learning | Best Researcher Award

PhD Student, National University of Sciences and Technology, Islamabad, Pakistan

Sara Tehsin is a motivated and results-driven professional with over ten years of experience in Image Processing and Machine Learning. As an Engineering Lecturer at HITEC University in Taxila, Pakistan, she excels in delivering high-quality educational experiences and has a proven track record of producing outstanding results through her strong work ethic, adaptability, and effective communication skills. She is passionate about academic development and seeks opportunities to contribute her expertise while furthering her professional growth. 📚💻

Publication Profile

Google Scholar

Education

Sara Tehsin is currently pursuing a PhD in Computer Engineering at the National University of Sciences and Technology (NUST), Islamabad, where she has achieved a remarkable GPA of 3.83/4.00. Her research focuses on Digital Forensics, Deep Learning, and Digital Image Processing. She holds a Master’s degree in Computer Engineering from NUST, where she graduated with a GPA of 3.7/4.0, and a Bachelor’s degree from The Islamia University of Bahawalpur, with a GPA of 3.36/4.00. 🎓🌟

Experience

Sara has extensive teaching experience, currently serving as an Engineering Lecturer at HITEC University since September 2019, where she develops engaging curriculum and delivers lectures aligned with international standards. Previously, she was a Computer Science Lecturer at Sharif College of Engineering and Technology, and she also served as a Teaching Assistant at NUST and a Lab Engineer at Foundation University. Her roles have encompassed curriculum development, practical instruction, and student support in various computer science subjects. 👩‍🏫🔧

Research Interests

Sara’s research interests encompass Digital Forensics, Deep Learning, Digital Image Processing, and Machine Learning. She focuses on developing innovative solutions for image recognition and forgery detection, contributing significantly to the fields of computer vision and machine learning. Her work aims to enhance the accuracy and efficiency of image processing systems. 🧠🔍

Publications

Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition
S. Tehsin, S. Rehman, M.O.B. Saeed, F. Riaz, A. Hassan, M. Abbas, R. Young, …
IEEE Access, 5, 24495-24502 (2017)
Cited by: 21

Improved maximum average correlation height filter with adaptive log base selection for object recognition
S. Tehsin, S. Rehman, A.B. Awan, Q. Chaudry, M. Abbas, R. Young, A. Asif
Optical Pattern Recognition XXVII, 9845, 29-41 (2016)
Cited by: 18

Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments
S. Tehsin, S. Rehman, F. Riaz, O. Saeed, A. Hassan, M. Khan, M.S. Alam
Pattern Recognition and Tracking XXVIII, 10203, 28-39 (2017)
Cited by: 12

Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter
S. Tehsin, S. Rehman, A. Bilal, Q. Chaudry, O. Saeed, M. Abbas, R. Young
Pattern Recognition and Tracking XXVIII, 10203, 22-37 (2017)
Cited by: N/A

Robin Augustine | Artificial Intelligence | Excellence in Research

Assoc. Prof. Dr. Robin Augustine | Artificial Intelligence | Excellence in Research

Associate Professor, Uppsala University, Sweden

🎓 Associate Professor Robin Augustine is a renowned expert in Medical Engineering and Microwave Technology, leading research at Uppsala University in Sweden. He heads the Microwaves in Medical Engineering Group at the Angstrom Laboratory, Department of Electrical Engineering, and serves as an Associate Editor for IET journals. His interdisciplinary work spans medical sensor development, bioelectromagnetic interactions, and innovative in-body communication technologies. Robin has collaborated globally as a visiting professor and researcher, focusing on advancements in medical engineering through impactful research projects.

Publication Profile

Scopus

Education

📚 Dr. Robin Augustine earned his Ph.D. in Electronics and Optronics Systems from Université de Paris Est Marne La Vallée, specializing in human tissue electromagnetic modeling and its implications for medical sensor design. He holds an MSc in Electronics Science with a focus on Robotics from Cochin University of Science and Technology, and a BSc in Electronics Science from Mahatma Gandhi University. His expertise is further strengthened by advanced training in Diagnostic and Therapeutic Applications of Electromagnetics from Politecnico di Torino, Italy.

Experience

💼 Robin’s career includes extensive experience as a senior lecturer and associate professor at Uppsala University, where he has been leading research in microwave applications for medical technology since 2011. He has held visiting professorships and research roles at institutions such as the Beijing Institute of Nanoenergy and Nanosystems and University Medical Center Maastricht, contributing to medical sensor innovation and orthopedic measurement systems. Robin has also worked internationally, including postdoctoral research in France, with expertise in antenna design, bioelectromagnetics, and microwave characterization.

Research Focus

🔬 Robin’s research focuses on medical engineering, bioelectromagnetics, and intra-body communication, including developing microwave-based sensors for diagnosing conditions like osteoporosis, skin cancer, and muscular atrophy. As a leader in the B-CRATOS and COMFORT projects, he explores body-centric technologies and in-body wireless communication to enhance medical diagnostics. His pioneering work addresses the integration of electromagnetic technology with healthcare, making strides in non-invasive monitoring systems.

Awards and Honours

🏆 Dr. Augustine’s impactful research has attracted numerous grants and awards, including significant EU funding for projects like PERSIMMON and DIAMPS. He has secured research funding from bodies such as the Swedish Research Council, Vinnova, and the Foundation for Strategic Research, supporting his innovative work on body communication systems and medical diagnostics. His research has earned recognition through the Swedish Excellence Grant for Young Researchers and multiple grants for advancing medical engineering solutions.

Publication Top Notes

Biphasic lithium iron oxide nanocomposites for enhancement in electromagnetic interference shielding properties

Rotation insensitive implantable wireless power transfer system for medical devices using metamaterial-polarization converter

Improving burn diagnosis in medical image retrieval from grafting burn samples using B-coefficients and the CLAHE algorithm