Sara Tehsin | Deep learning | Best Researcher Award

Ms. Sara Tehsin | Deep learning | Best Researcher Award

PhD Student, National University of Sciences and Technology, Islamabad, Pakistan

Sara Tehsin is a motivated and results-driven professional with over ten years of experience in Image Processing and Machine Learning. As an Engineering Lecturer at HITEC University in Taxila, Pakistan, she excels in delivering high-quality educational experiences and has a proven track record of producing outstanding results through her strong work ethic, adaptability, and effective communication skills. She is passionate about academic development and seeks opportunities to contribute her expertise while furthering her professional growth. 📚💻

Publication Profile

Google Scholar

Education

Sara Tehsin is currently pursuing a PhD in Computer Engineering at the National University of Sciences and Technology (NUST), Islamabad, where she has achieved a remarkable GPA of 3.83/4.00. Her research focuses on Digital Forensics, Deep Learning, and Digital Image Processing. She holds a Master’s degree in Computer Engineering from NUST, where she graduated with a GPA of 3.7/4.0, and a Bachelor’s degree from The Islamia University of Bahawalpur, with a GPA of 3.36/4.00. 🎓🌟

Experience

Sara has extensive teaching experience, currently serving as an Engineering Lecturer at HITEC University since September 2019, where she develops engaging curriculum and delivers lectures aligned with international standards. Previously, she was a Computer Science Lecturer at Sharif College of Engineering and Technology, and she also served as a Teaching Assistant at NUST and a Lab Engineer at Foundation University. Her roles have encompassed curriculum development, practical instruction, and student support in various computer science subjects. 👩‍🏫🔧

Research Interests

Sara’s research interests encompass Digital Forensics, Deep Learning, Digital Image Processing, and Machine Learning. She focuses on developing innovative solutions for image recognition and forgery detection, contributing significantly to the fields of computer vision and machine learning. Her work aims to enhance the accuracy and efficiency of image processing systems. 🧠🔍

Publications

Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition
S. Tehsin, S. Rehman, M.O.B. Saeed, F. Riaz, A. Hassan, M. Abbas, R. Young, …
IEEE Access, 5, 24495-24502 (2017)
Cited by: 21

Improved maximum average correlation height filter with adaptive log base selection for object recognition
S. Tehsin, S. Rehman, A.B. Awan, Q. Chaudry, M. Abbas, R. Young, A. Asif
Optical Pattern Recognition XXVII, 9845, 29-41 (2016)
Cited by: 18

Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments
S. Tehsin, S. Rehman, F. Riaz, O. Saeed, A. Hassan, M. Khan, M.S. Alam
Pattern Recognition and Tracking XXVIII, 10203, 28-39 (2017)
Cited by: 12

Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter
S. Tehsin, S. Rehman, A. Bilal, Q. Chaudry, O. Saeed, M. Abbas, R. Young
Pattern Recognition and Tracking XXVIII, 10203, 22-37 (2017)
Cited by: N/A

Robin Augustine | Artificial Intelligence | Excellence in Research

Assoc. Prof. Dr. Robin Augustine | Artificial Intelligence | Excellence in Research

Associate Professor, Uppsala University, Sweden

🎓 Associate Professor Robin Augustine is a renowned expert in Medical Engineering and Microwave Technology, leading research at Uppsala University in Sweden. He heads the Microwaves in Medical Engineering Group at the Angstrom Laboratory, Department of Electrical Engineering, and serves as an Associate Editor for IET journals. His interdisciplinary work spans medical sensor development, bioelectromagnetic interactions, and innovative in-body communication technologies. Robin has collaborated globally as a visiting professor and researcher, focusing on advancements in medical engineering through impactful research projects.

Publication Profile

Scopus

Education

📚 Dr. Robin Augustine earned his Ph.D. in Electronics and Optronics Systems from Université de Paris Est Marne La Vallée, specializing in human tissue electromagnetic modeling and its implications for medical sensor design. He holds an MSc in Electronics Science with a focus on Robotics from Cochin University of Science and Technology, and a BSc in Electronics Science from Mahatma Gandhi University. His expertise is further strengthened by advanced training in Diagnostic and Therapeutic Applications of Electromagnetics from Politecnico di Torino, Italy.

Experience

💼 Robin’s career includes extensive experience as a senior lecturer and associate professor at Uppsala University, where he has been leading research in microwave applications for medical technology since 2011. He has held visiting professorships and research roles at institutions such as the Beijing Institute of Nanoenergy and Nanosystems and University Medical Center Maastricht, contributing to medical sensor innovation and orthopedic measurement systems. Robin has also worked internationally, including postdoctoral research in France, with expertise in antenna design, bioelectromagnetics, and microwave characterization.

Research Focus

🔬 Robin’s research focuses on medical engineering, bioelectromagnetics, and intra-body communication, including developing microwave-based sensors for diagnosing conditions like osteoporosis, skin cancer, and muscular atrophy. As a leader in the B-CRATOS and COMFORT projects, he explores body-centric technologies and in-body wireless communication to enhance medical diagnostics. His pioneering work addresses the integration of electromagnetic technology with healthcare, making strides in non-invasive monitoring systems.

Awards and Honours

🏆 Dr. Augustine’s impactful research has attracted numerous grants and awards, including significant EU funding for projects like PERSIMMON and DIAMPS. He has secured research funding from bodies such as the Swedish Research Council, Vinnova, and the Foundation for Strategic Research, supporting his innovative work on body communication systems and medical diagnostics. His research has earned recognition through the Swedish Excellence Grant for Young Researchers and multiple grants for advancing medical engineering solutions.

Publication Top Notes

Biphasic lithium iron oxide nanocomposites for enhancement in electromagnetic interference shielding properties

Rotation insensitive implantable wireless power transfer system for medical devices using metamaterial-polarization converter

Improving burn diagnosis in medical image retrieval from grafting burn samples using B-coefficients and the CLAHE algorithm

 

Avirup Roy | Machine Learning |Machine Learning Research Award

Mr. Avirup Roy | Machine Learning |Machine Learning Research Award

PhD Student, Michigan State University, United States

Dr. Avirup Roy is a dedicated researcher and engineer specializing in networked embedded and wireless systems. Currently pursuing his PhD at Michigan State University, his work focuses on developing self-learning mechanisms for embedded hardware systems with limited computational resources. With a solid foundation in electronics and communication engineering, Avirup has gained extensive experience in both academia and industry, contributing to projects ranging from smart malaria detection to automated power management systems. His technical skills span machine learning, embedded systems, cloud computing, and web development. Beyond his professional life, Avirup is passionate about Indian classical music, photography, and swimming. 🌟📚🎵📷🏊‍♂️

Profile

ORCID

 

Education🎓

Michigan State University, East Lansing, MI, US PhD in Electrical and Computer Engineering (2020-Present). Dissertation: Self-learning mechanisms for Embedded hardware systems with limited computational resources. GPA: 3.75/4Maulana Abul Kalam Azad University of Technology, Kolkata, WB, India Bachelor of Technology (BTech) in Electronics and Communication Engineering (2013-2017)

Experience💼

Graduate Research Assistant, Michigan State University (Sep 2020 – Jul 2023),Developed an android and website application for smart malaria detection involving cloud database integration. Graduate Teaching Assistant, Michigan State University (Aug 2023 – Present), Instructed and graded labs for Embedded Cyber-physical Systems, VLSI Systems, and Digital Control courses. ICER Cloud Computing Fellow, Michigan State University (Sep 2023 – Present), Implemented Azure cloud resources in semi-supervised federated learning for embedded devices. Programmer Analyst, Cognizant Technology Solutions (Dec 2017 – Jul 2020), Developer and support analyst for ASP.NET based applications of MetLife Inc. Intern, Calcutta Electric Supply Corporation (CESC) Limited (Jul 2016 – Aug 2016), Worked on automated power management systems using SCADA communication. Intern, Bharat Sanchar Nigam Limited (BSNL) (Jun 2015 – Aug 2015), Explored general trends in wireless communication. Undergraduate Researcher, Maulana Abul Kalam Azad University of Technology (2015-2016), Presented research at various international conferences and served as the vice-president of SPIE Student Chapter.

Research Interests🔍

Embedded Machine Learning: Focused on developing efficient learning algorithms for resource-constrained devices.
Networked Embedded Systems: Exploring self-learning mechanisms and their applications in real-world scenarios.
Cloud Computing: Leveraging cloud resources for semi-supervised federated learning.
VLSI Systems: In-depth study and teaching of Very-Large-Scale Integration systems.
Cyber-Physical Systems: Research on embedded systems interacting with physical processes.

Awards🏆

National Social Entrepreneurship Programme (2014): Secured 2nd position for the ‘Hand-Made Paper Industry’ project.
SPIE Smart Structures and Non-destructive Evaluation Conference (2016): Presented research in Las Vegas, Nevada.
EAPE Conference (2015): Presented research on emerging areas of photonics and electronics.
Graduate Fellowships: Awarded multiple fellowships during PhD for research and teaching excellence.

Publications

Semi-Supervised Learning Using Sparsely Labelled Sip Events for Online Hydration Tracking Systems
A. Roy, H. Dutta, A. K. Bhuyan, and S. K. Biswas, 2023, International Conference on Machine Learning and Applications (ICMLA).
Cited by: 3 articles.

An On-Device Learning System for Estimating Liquid Consumption from Consumer-Grade Water Bottles and Its Evaluation
Roy, A., Dutta, H., Griffith, H., & Biswas, S., 2022, Sensors.
Cited by: 5 articles.

Gabriella d’Albenzio | Artificial Intelligence | Best Researcher Award

Dr. Gabriella d’Albenzio | Artificial Intelligence | Best Researcher Award

Postdoc, Perk Lab Perk Lab Laboratory for Percutaneous Surgery, Canada

🎓 Gabriella d’Albenzio is a talented researcher with a focus on biomedical engineering and medical imaging. Currently pursuing a Ph.D. in Informatics at the University of Oslo, she has an impressive background in clinical engineering and biomedical engineering. Gabriella has worked on cutting-edge projects related to image-guided therapies and deep learning for medical applications, contributing significantly to her field through both research and development.

Profile

Scopus

 

Education

📚 Gabriella d’Albenzio holds a Ph.D. in Informatics from the University of Oslo (2021-2024). She completed her M.Sc. in Biomedical Engineering and B.Sc. in Clinical Engineering at Sapienza University of Rome, Italy, reflecting a solid foundation in both engineering and medical sciences.

Experience

💼 Gabriella d’Albenzio has extensive experience as a Scientific Software Developer at The Intervention Centre in Oslo, Norway, and as a Research Assistant at NTNU. She has also interned at the Rehabilitation Bioengineering Lab in Rome, contributing to various research projects involving advanced medical imaging and deep learning technologies.

Research Interests

🧠 Gabriella’s research interests are centered around enhancing surgical planning and medical imaging through deep learning and advanced computational techniques. Her work focuses on developing algorithms for medical image segmentation and predictive models for surgical outcomes, aiming to improve patient-specific treatment strategies.

Awards

🏅 Gabriella d’Albenzio has been recognized with the Globalink Research Internship by Mitacs, Canada, and a Grant Research Stay Abroad by The Research Council of Norway. These awards highlight her outstanding contributions to research and her commitment to advancing biomedical engineering.

Publications

Optimizing Surgical Plans for Parenchyma-Sparing Liver Resections through Contour-Guided Resection and Surface Approximation

Using NURBS for Virtual Resections in Liver Surgery Planning: A Comparative Usability Study

Patient-Specific Functional Liver Segments Based on Centerline Classification of the Hepatic and Portal Veins

ALive: Analytics for Computation and Visualization of Liver Resections

Laparoscopic Parenchyma-Sparing Liver Resection for Large (≥50 mm) Colorectal Metastases