Zeshan Khan | Artificial Intelligence| Best Researcher Award

Assoc. Prof. Dr. Zeshan Khan |Artificial Intelligence| Best Researcher Award

Associate Professor, National Yunlin University of Science and Technology, Taiwan

Dr. Zeshan Aslam Khan is an esteemed Associate Professor at the International Graduate School of Artificial Intelligence, National Yunlin University of Engineering Sciences and Technology. With a strong background in Artificial Intelligence, Image Analysis, and Recommender Systems, he has made significant contributions to academia and industry. As the Director of the PRISM Lab, he actively supervises cutting-edge AI research, fostering innovation in Smart Metering, Fingerprint Recognition, and Alzheimer’s Detection. His work is recognized globally, with prestigious awards, high-impact publications, and collaborations with leading research institutions in the UK, Ireland, Taiwan, and Pakistan. 🌍📚

Publication Profile

Scopus

🎓 Education

Dr. Khan holds a Ph.D. in Electronic Engineering (2020) with a specialization in Learning Machines for Recommender Systems. His academic journey includes an M.Sc. in Computer Systems Engineering from Halmstad University, Sweden (2010), and a B.Sc. in Computer Information Systems Engineering from UET Peshawar, Pakistan (2005). His extensive educational background has laid a strong foundation for his expertise in AI-driven systems and computational intelligence. 🎓🔬

💼 Experience

With over a decade of experience, Dr. Khan has established himself as a leading researcher and educator in Artificial Intelligence. He has served as a Visiting Researcher at the University of Birmingham (UK) and the University of Galway (Ireland). His industry collaborations include partnerships with the National Radio Telecommunication Corporation (NRTC), Pakistan, and the Future Technology Research Center, Taiwan. As an Associate Editor of the Journal of Innovative Technologies (JIT) and a reviewer for top-tier journals like IEEE Transactions on AI, he plays a crucial role in shaping AI research globally. 🌟🔍

🏆 Awards and Honors

Dr. Khan’s excellence in research and academia has been recognized through numerous accolades. He was awarded the prestigious Ph.D. Gold Medal (2020) and the Faculty Research Brilliance Award (2022). In 2023, he received the Productive Researcher Award for his outstanding publications and graduate supervisions. His work has also secured significant research grants, including the Pakistan Engineering Council (PEC) Grant and the Higher Education Commission (HEC) Grant, enabling advancements in AI and IoT applications. 🏅🔬

🔬 Research Focus

Dr. Khan’s research revolves around Artificial Intelligence, Image Classification/Segmentation, Recommender Systems, Embedded Systems, and Fractional Calculus. His groundbreaking work in explainable AI, fractional optimization, and chaotic heuristics has been widely published in high-impact Q1 journals. His innovative contributions include developing AI-powered solutions for healthcare, smart metering, and signature verification, bridging the gap between academia and industry through real-world applications. 🤖📈

📝 Conclusion

Dr. Zeshan Aslam Khan stands as a prominent figure in the field of Artificial Intelligence, with a profound impact on research, education, and industry collaborations. His dedication to AI-driven solutions, student mentorship, and high-impact publications solidifies his reputation as a leader in predictive intelligence and systems modeling. With a global research footprint and numerous accolades, he continues to drive technological advancements that shape the future of AI. 🌍🚀

📚 Publications 

Generalized fractional optimization-based explainable lightweight CNN model for malaria disease classificationComputers in Biology and Medicine, 2025 (Q1, IF: 7.0) [Link] 📖🔬

Fractional Gradient Optimized Explainable CNN for Alzheimer’s Disease DiagnosisHeliyon, 2024 (Q1, IF: 3.4) [Link] 🧠📊

Design of chaotic Young’s double slit experiment optimization heuristics for nonlinear muscle model identificationChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 🎯💡

A gazelle optimization expedition for key term separated fractional nonlinear systems applied to muscle modelingChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 📉⚙️

Generalized fractional strategy for recommender systems with chaotic ratings behaviorChaos, Solitons & Fractals, 2022 (Q1, IF: 5.3) [Link] ⭐🔍

Lianbo Ma | Artificial Intelligence | Best Researcher Award

Prof. Lianbo Ma | Artificial Intelligence | Best Researcher Award

Professor, Northeastern University, China

Dr. Lianbo Ma is a distinguished professor at Northeastern University, China, with expertise in computational intelligence, machine learning optimization, big data analysis, and natural language processing. With a Ph.D. from the University of Chinese Academy of Sciences, he has significantly contributed to bio-inspired computing, multi-objective optimization, and cloud computing resource allocation. As a prolific researcher, Dr. Ma has published over 90 papers in high-impact journals and conferences, earning global recognition for his work. His research has been widely cited, and he has received numerous prestigious awards, making him a key figure in artificial intelligence and optimization.

Publication Profile

Google Scholar

🎓 Education

Dr. Ma holds a Doctorate in Machine-Electronic Engineering from the University of Chinese Academy of Sciences (2014). He earned his Master’s degree (2007) and Bachelor’s degree (2004) in Information Science and Engineering from Northeastern University, China. His academic journey has provided a solid foundation in AI-driven optimization, neural networks, and computational intelligence.

💼 Experience

Dr. Ma has held various esteemed positions in academia and research institutions. Since 2017, he has been a professor at Northeastern University, China, specializing in software engineering and AI. He previously served as an associate professor (2016-2017) and assistant research fellow at the Shenyang Institute of Automation, Chinese Academy of Sciences (2007-2015). His international experience includes a visiting scholar position at Surrey University, UK (2019-2020), under the mentorship of Prof. Yaochu Jin. His extensive professional journey highlights his contributions to AI-driven industrial applications and large-scale optimization.

🏆 Awards and Honors

Dr. Ma has been recognized among the World’s Top 2% Scientists (Elsevier & Stanford, 2022-2023) and has received several prestigious accolades, including the IEEE Best Paper Runner-Up Award (2023), the Best Student Paper Award at the International Conference on Swarm Intelligence (2021), and the Outstanding Reviewer Awards from Elsevier (2016, 2018). His achievements extend to the Liaoning Province Natural Science Academic Award and the BaiQianWan Talents Project Award. His dedication to research and mentorship is further evident in his recognition as an Excellent Master’s Thesis Instructor.

🔬 Research Focus

Dr. Ma’s research spans computational intelligence, large-scale multi-objective optimization, and bio-inspired computing. His expertise extends to cloud computing, edge computing, and social network analysis, where he has worked on cloud resource allocation and influence maximization. He is also actively engaged in multi-modal data processing, focusing on knowledge graphs, entity extraction, and text mining. His research integrates AI with industrial applications, advancing neural architecture search and intelligent data analysis.

🔍 Conclusion

Dr. Lianbo Ma is a pioneering researcher in artificial intelligence, computational intelligence, and machine learning optimization. His contributions to big data analytics, neural architecture search, and evolutionary computation have positioned him as a leading figure in the field. With numerous accolades, high-impact publications, and extensive academic service, Dr. Ma continues to shape the future of AI-driven optimization and intelligent computing. 🚀

📖 Publications

A Hybrid Neural Architecture Search Algorithm Optimized via Lifespan Particle Swarm Optimization for Coal Mine Image Recognition

Truthful Combinatorial Double Auctions for Mobile Edge Computing in Industrial IoT. IEEE Transactions on Mobile Computing, 21(11), 4125-4138. DOI

Single-Domain Generalized Predictor for Neural Architecture Search System. IEEE Transactions on Computers. DOI

One-Step Forward and Backtrack: Overcoming Zig-Zagging in Loss-Aware Quantization Training. AAAI-24 Conference Proceedings.

Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation. DOI

An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-objective Optimization. IEEE Transactions on Cybernetics, 52(7), 6684-6696. DOI

Enhancing Learning Efficiency of Brain Storm Optimization via Orthogonal Learning Design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(11), 6723-6742. DOI

 

Lukas Petersson | Artificial Intelligence | Best Researcher Award

Mr. Lukas Petersson | Artificial Intelligence | Best Researcher Award

Founder, Vectorview, United States

Lukas Petersson is a passionate AI and robotics researcher, currently serving as the CTO and Co-founder of Vectorview in San Francisco. With a strong background in software engineering, machine learning, and robotics, Lukas has contributed significantly to AI safety evaluations for major labs such as Anthropic. He has a track record of successful funding, securing $2.2M in capital, and conducting groundbreaking research on agentic capabilities of LLMs. 🌟🤖💡

Publication Profile

Google Scholar

Education:

Lukas is pursuing his M.Sc. and B.Sc. in Engineering Physics and Engineering Mathematics at Lund University, where he has achieved an impressive GPA of 4.9/5 and 5.0/5. He also spent a year at ETH Zurich focusing on Machine Learning and Robotics. 🎓📚

Experience:

Lukas has gathered diverse experience across top organizations such as Google, Disney Research, CommaAI, and the European Space Agency. He has contributed to AI research, robotics, and autonomy engineering, with notable achievements like developing RL algorithms for social robotic interaction and automating data analysis at Google. He has also been part of impactful projects like the viral robot developed at Disney Research. 🏢🧑‍💻🚀

Research Interests:

Lukas’s research interests lie at the intersection of AI Safety, Machine Learning, Robotics, and Autonomous Systems. His work focuses on improving agentic capabilities of large language models (LLMs) and exploring the application of Reinforcement Learning (RL) for social robots. 🤖🔬🌍

Awards:

Lukas’s work has been recognized in the fields of robotics and AI, contributing to significant advancements in safety and performance. He has excelled in competitive programming and autonomous vehicle development, receiving awards and recognition for his innovative approach to solving real-world challenges. 🏆🌟

Publications:

“Taming the Machine” (2023): Contributed research on AI Safety for a book discussing the future of machine learning and its societal impacts. 📚🧠

“MBSE” (2021): Published and presented a paper on Model-Based Systems Engineering at a conference, focusing on advanced methodologies in systems engineering. 📄🔧

 

Samana Batool | Artificial Intelligence | Best Researcher Award

Ms. Samana Batool | Artificial Intelligence | Best Researcher Award

PhD scholar, Capital University of Science and Technology, Pakistan

📝 Samana Batool is a dedicated PhD student in Electrical Engineering, specializing in AI applications in medical imaging. She recently completed her final defense at the Capital University of Science and Technology, Islamabad, Pakistan. With a strong foundation in AI-driven healthcare solutions, Samana has made significant contributions to the field of medical imaging, particularly in echocardiogram data analysis. Her work has been published in reputable journals, and she serves as a reviewer for high-impact publications, playing a key role in advancing research standards.

Publication Profile

Google scholar

Strengths for the Award:

Strong Academic Background: Samana Batool holds a PhD in Electrical Engineering with a specialization in AI applications in medical imaging. She has completed advanced research, particularly in echocardiogram data analysis, which is a niche area within medical AI.

Innovative Research: Her research projects, such as the integration of multi-modality techniques (ECG and Echocardiography) and the quantification of LV structure using deep learning, demonstrate innovation and the potential for significant impact on clinical practices.

Publications and Editorial Role: She has published papers in reputable journals (Diagnostics, MDPI; Physica Medica, Elsevier) and serves as a reviewer for high-impact journals, indicating recognition by the scientific community.

Collaboration with Medical Institutions: Her collaboration with the Cardiology Department at Shifa International Hospital, Islamabad, further supports the practical application of her research in clinical settings.

Areas for Improvement:

Limited Citation Index: The citation count of 4 is relatively low, which may reflect a need for more visibility and impact in the academic community.

Lack of Industry Engagement: No consultancy or industry-sponsored projects are mentioned, which could demonstrate a lack of practical industry application or impact.

Absence of Patents and Books: No patents or books published suggests a focus on journal publications rather than other forms of dissemination and intellectual property, which could be considered a limitation in terms of innovation and knowledge transfer.

Professional Memberships and Recognition: The absence of professional memberships and awards or recognitions may limit her visibility and recognition in her field.

 

Education

🎓 Samana holds a PhD in Electrical Engineering, specializing in AI applications in medical imaging. She also earned a Master’s in Computer Engineering and a Bachelor’s in Electrical Engineering. Her academic journey reflects a strong commitment to integrating advanced AI techniques with medical imaging to improve diagnostic tools and healthcare outcomes.

Experience

💼 Samana has a diverse professional background, serving as a Research Associate at Digital Pakistan Lab (NUST), where she focused on AI-driven healthcare solutions. She also worked as an Assistant Manager (Electronics) at the Pakistan Space and Upper Research Commission (SUPARCO). Her roles have centered on leveraging AI for innovative medical applications, particularly in cardiac imaging and disaster management.

Research Focus

🔍 Samana’s research revolves around the applications of machine learning and deep learning in medical image analysis, particularly in echocardiogram data. She has developed methodologies for quantifying left ventricular (LV) structure and function, enhancing the precision of cardiac diagnostics. Her ongoing projects also explore integrating multimodality techniques, such as ECG and echocardiography, to advance AI-based solutions in healthcare.

Awards and Honors

🏆 Samana has been recognized for her contributions to AI-driven medical imaging, particularly for her innovative research on echocardiogram data analysis. Her published work in reputed journals has gained recognition, contributing to advancements in LV quantification and AI-based healthcare solutions.

Publication Top Notes

“Ejection Fraction Estimation from Echocardiograms Using Optimal Left Ventricle Feature Extraction Based on Clinical Methods”Diagnostics (MDPI), 2023

“Quantification of LV Structure and Function using Deep Learning Techniques”Physica Medica (Elsevier), 2022

Conclusion:

Samana Batool demonstrates strong potential for the “Best Researcher Award” due to her innovative research in AI applications in medical imaging and her active involvement in academic publishing. However, to enhance her competitiveness, she could work on increasing her citation index, engaging more with industry projects, and contributing to professional organizations. Her existing strengths in academic research and collaboration are notable, but diversifying her achievements could further strengthen her nomination for this award.

Lourdes Swentek | Artificial Intelligence | Best Researcher Award

Assist Prof Dr. Lourdes Swentek | Artificial Intelligence | Best Researcher Award

Academician/Research Scholar, UCI, United States

Dr. Lourdes Swentek is a highly accomplished trauma and critical care surgeon with extensive experience in surgical research and education. She completed her fellowship in Critical Care at the University of California, Irvine, and her residency in Surgery at Loma Linda University Health. Dr. Swentek has been recognized for her outstanding contributions to trauma and acute care surgery, earning numerous awards and accolades throughout her career. Her research interests focus on islet transplantation, oxidative stress in pancreatitis, and innovative surgical techniques.

Profile

Scopus

 

Education

🎓 Dr. Lourdes Swentek completed her Critical Care fellowship at the University of California, Irvine, and her Surgical Residency at Loma Linda University Health. She also served as a Research Resident in the Department of Surgery at the University of California, Irvine, where she focused on islet transplantation.

Experience

🔬 Dr. Lourdes Swentek’s professional journey includes a fellowship in Critical Care at the University of California, Irvine, and a surgical residency at Loma Linda University Health. She has significant research experience in islet transplantation and surgical innovation, having contributed to several impactful research projects and publications.

Research Interests

🧪 Dr. Lourdes Swentek’s research interests encompass islet transplantation, oxidative stress in pancreatitis, and the development of novel surgical techniques. Her work has contributed to advancing knowledge and improving practices in these areas, making a notable impact on the field of trauma and critical care surgery.

Awards

🏆 Dr. Lourdes Swentek has received numerous awards, including the East Oriens Award for her career in Trauma and Acute Care Surgery in 2018, the Highest Resident Absite Score at Loma Linda University Health in 2017, and the UCI School of Medicine Achievement Award for Clinical Science Lecturer in 2022. These accolades reflect her dedication and excellence in her field.

Publications

The Addition of a Nurse Practitioner to an Inpatient Surgical Team Results in Improved Utilization of Resources

Medium and Long-term Outcomes after Pneumatic Dilation or Laparoscopic Heller Myotomy for Achalasia: A Meta-analysis

Presentation, Diagnosis, and Treatment of Oesophageal Motility Disorders

Role of Oxidative Stress in the Pathogenesis of Pancreatitis: Effect of Antioxidant Therapy

Total Pancreatectomy and Islet Auto Transplantation for Chronic Pancreatitis

 

Omar Soufi | Artificial Intelligence | Best Researcher Award

Dr. Omar Soufi | Artificial Intelligence | Best Researcher Award

Doctorate, Mohammed V University of Rabat Mohammadia School of Engineering, Morocco

👨‍💼 Dr. Omar Soufi is a distinguished Computer Science Engineer specializing in Artificial Intelligence, Data Science, Remote Sensing, and Geographic Information Systems (GIS). With a robust background in data analysis and decision-support systems, Dr. Soufi excels in promoting organizational advancements and enhancing strategic performance through well-planned recommendations. His proactive and industrious approach ensures the achievement of objectives by leveraging data-driven insights.

Profile

ORCID

Education

🎓 Dr. Omar Soufi earned his Ph.D. in Computer Science Engineering with a focus on Artificial Intelligence from EMI Rabat in 2023, completing his doctoral research with the AMIPS/E3S team. He also holds a degree in Engineering from Polytechnique Grenoble, ENSIMAG, and EMI Rabat, specializing in Information Systems Engineering and Software Quality Engineering, respectively. His foundational studies include a Diploma and a Bachelor’s degree in Mechanical Engineering from ARM Merkèns.

Experience

💼 Dr. Soufi’s professional journey includes notable roles such as Project Manager in the IT Department, Team Leader at the Decision Support Center, Head of the BI & Decision Tools Department, Head of the Geomatics & Decision Tools Division, and AI Mission Manager. His expertise spans numerous projects in artificial intelligence and data science, including the development of national geospatial platforms, disaster risk management systems, and SaaS solutions for real estate asset management and financial risk analysis.

Research Interests

🔍 Dr. Soufi’s research focuses on applying deep learning techniques to satellite image super-resolution and spacecraft attitude control. His interests extend to big data architecture, distributed systems, and geospatial data analysis, aiming to enhance the accessibility and quality of high-resolution satellite imagery.

Awards

🏆 Dr. Soufi has been recognized for his contributions to artificial intelligence and remote sensing. He has received certifications in various professional and personal development areas, including PMO, coaching, and personal development, further solidifying his expertise and commitment to excellence in his field.

Publications

📄 Study of deep learning-based models for single image super-resolution. Soufi, O., Belouadha, F.Z. (2022). Revue d’Intelligence Artificielle, Vol. 36, No. 6, pp. 939-952. https://doi.org/10.18280/ria.360616

📄 FSRSI: New deep learning-based approach for super-resolution of multispectral satellite images. Soufi, O., Belouadha, F.Z. (2023). Ingénierie des Systèmes d’Information, Vol. 28, No. 1, pp. 113-132. https://doi.org/10.18280/isi.280112

📄 Deep learning technique for image satellite processing. O. Soufi and F.Z- Belouadha. Intell Methods Eng Sci, vol. 2, no. 1, pp. 27–34, Mar. 2023.

📄 Enhancing Accessibility to High-Resolution Satellite Imagery: A Novel Deep Learning-Based Super-Resolution Approach. O. Soufi and F.Z- Belouadha. Journal of Environmental Treatment Techniques, 11(2), 44-49, 2023.

📄 An intelligent deep learning approach to spacecraft attitude control: the case of satellites. O. Soufi and FZ.- Belouadha. (2023). (Under Review)