Md. Emran Biswas | Data science | Best Researcher Award

Mr. Md. Emran Biswas | Data science | Best Researcher Award

Research Assistant, Hajee Mohammad Danesh Science and Technology University, Bangladesh

🌟 Md. Emran Biswas, hailing from Dinajpur, Bangladesh, is a passionate researcher and technologist specializing in machine learning, optimization algorithms, and their societal applications. He has actively contributed to predictive analysis, bioinformatics-based drug discovery, and developing AI solutions for global good. As a skilled programmer and researcher, Emran’s work has earned recognition through multiple publications, accolades, and groundbreaking projects in his field.

Publication Profile

Scopus

Education

🎓 Md. Emran Biswas completed his B.Sc. in Electronics and Communication Engineering at Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh, from March 2019 to November 2024, with an impressive CGPA of 3.412/4.00. His academic journey is marked by a focus on deep learning, predictive modeling, and optimization algorithms.

Experience

💼 Emran served as a Research Assistant at Petarhub and DIOT Lab, HSTU, contributing to machine learning, predictive modeling, and optimization projects. His notable achievements include developing the ApexBoost Regression model, managing large datasets, and publishing impactful research in reputed journals like IEEE and Electronics.

Research Interests

🔍 Emran’s research focuses on machine learning, optimization algorithms, and their transformative applications in areas like bioinformatics-based drug discovery, predictive analysis, and societal challenges. His work aligns with the vision of ‘AI for Good,’ driving impactful innovation.

Awards

🏆 Emran has earned recognition for his innovative projects, including First Runner-Up at the Project Exhibition 2022 for his “Face Detection-Based Attendance System” and Second Runner-Up in 2023 for his “AI-Based Health Checking System.” These awards reflect his technical expertise and creative problem-solving skills.

Publications

Machine Learning Approach to Estimate Requirements for Target Productivity of Garments Employees. IEEE ICEEICT 2024 (Cited by: 5)

An Effective Data-Driven Approach to Predict Bike Rental Demand. Google Scholar (Cited by: 12)

Spatio-Temporal Feature Engineering and Selection-Based Flight Arrival Delay Prediction Using Deep Feedforward Regression Network. Electronics, 13(24), p.4910 (Cited by: 9)

 

Assoc. Prof. Dr.Pabrício Lopes | Data Science | Best Researcher Award

Assoc. Prof. Dr. Pabrício Lopes | Data Science | Best Researcher Award

Professor, UFRPE, Brazil

🌟 Pabrício Marcos Oliveira Lopes is a dedicated scholar specializing in Remote Sensing, Agrometeorology, and Physical Geography. He is a Professor of Agronomy at the Federal Rural University of Pernambuco (UFRPE) in Recife, Brazil, contributing significantly to the fields of geospatial analysis and climate studies. With over 62 impactful publications, Dr. Lopes is a leader in exploring environmental phenomena, emphasizing sustainability and climate adaptation. 📚🌍

Publication Profile

ORCID

Education

🎓 Dr. Lopes earned his Ph.D. in Remote Sensing from the National Institute for Space Research (INPE) in 2006. He holds an M.Sc. in Agrometeorology from the Federal University of Campina Grande (UFCG, 1999) and dual undergraduate degrees in Meteorology (UFCG, 1997) and Physics (UEPB, 1999). His educational journey showcases a robust interdisciplinary expertise in physical and environmental sciences. 📊🌤️

Experience

🏫 Dr. Lopes serves as a Professor of Agronomy at UFRPE, where he integrates research and teaching to address agricultural and environmental challenges in Brazil’s semi-arid regions. His expertise includes geospatial technologies, climate modeling, and phenological monitoring, making him a valuable contributor to academia and applied science. 🌾🛰️

Research Interests

📖 Dr. Lopes’ research focuses on phenological monitoring, aridity conditions, climate extremes, and desertification, with a particular emphasis on the Brazilian semi-arid region. His work leverages satellite data, GIS modeling, and time-series analysis to develop innovative solutions for environmental monitoring and sustainable agriculture. 🌱📡

Awards

🏆 Dr. Lopes has received recognition for his academic contributions, though specific awards were not listed. His significant impact in climate studies and geospatial research is widely acknowledged in the scientific community. 🌟🎖️

Publications

Phenological Monitoring of Irrigated Sugarcane Using Google Earth Engine, Time Series, and TIMESAT in the Brazilian Semi-Arid
AgriEngineering, 2024-10-18 | DOI: 10.3390/agriengineering6040217
Cited by: Information not available.

Influência de eventos climáticos extremos na ocorrência de queimadas e no poder de regeneração vegetal
Revista Brasileira de Geografia Física, 2024-03-14 | DOI: 10.26848/rbgf.v17.2.p1098-1113
Cited by: Information not available.

Geospatial Insights into Aridity Conditions: MODIS Products and GIS Modeling in Northeast Brazil
Hydrology, 2024-02-26 | DOI: 10.3390/hydrology11030032
Cited by: Information not available.

Assessment of Desertification in the Brazilian Semiarid Region Using Time Series of Climatic and Biophysical Variables
Revista Brasileira de Geografia Física, 2023-12-29 | DOI: 10.26848/rbgf.v16.6.p3424-3444
Cited by: Information not available.

Carolina Magalhães | Machine Learning | Best Researcher Award

Dr. Carolina Magalhães | Machine Learning | Best Researcher Award

Investigadora, INEGI – Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial, Portugal

👩‍🔬 Carolina Magalhães is a dedicated biomedical engineer and PhD candidate with expertise in applying AI and imaging technologies to healthcare challenges. Based in Porto, Portugal, she combines her passion for modern technology with a problem-solving mindset to develop innovative solutions in skin cancer diagnostics. Carolina has worked collaboratively with clinical experts to bridge research and practical applications, contributing significantly to advancing imaging-based decision support systems.

Publication Profile

ORCID

Education

🎓 Carolina holds a PhD in Biomedical Engineering from the Faculdade de Engenharia da Universidade do Porto (2020–2024). She also completed her MSc in Biomedical Engineering at the same institution (2016–2018) and earned her Bachelor’s in Bioengineering – Biomedical Engineering from Universidade Católica Portuguesa (2013–2016).

Experience

💼 Carolina has a rich research background, currently serving as a Graduate Research Fellow at INEGI, focusing on skin lesion diagnosis using multispectral imaging. Her work spans from leveraging machine learning models for skin cancer classification to thermal and UV imaging techniques. Previously, she contributed to projects on hyperhidrosis diagnosis, prosthetic device design, and thermal image analysis for musculoskeletal disorders, collaborating with leading hospitals and research centers in Portugal.

Research Interests

🔬 Carolina is passionate about exploring artificial intelligence, machine learning, and advanced imaging technologies for healthcare applications. Her interests include developing multispectral imaging systems, improving diagnostic tools for skin cancer, and advancing infrared thermography for clinical support systems.

Awards

🏆 Carolina’s innovative work has been recognized with prestigious research grants from the Foundation for Science and Technology (SFRH/BD/144906/2019) and other funding organizations. These awards have supported her impactful contributions to biomedical engineering and healthcare innovation.

Publications

“Systematic Review of Deep Learning Techniques in Skin Cancer Detection”
BioMedInformatics, 11/2024
Read here

“Skin Cancer Image Classification with Artificial Intelligence Strategies: A Systematic Review”
Journal of Imaging, 10/2024
Read here

“Use of Infrared Thermography for Abdominoplasty Procedures in Patients with Extensive Subcostal Scars: A Preliminary Analysis”
Plast Reconstr Surg Glob Open, 06/2023
Read here

“Classic Versus Scarpa-Sparing Abdominoplasty: An Infrared Thermographic Comparative Analysis”
J Plast Reconstr Aesthet Surg, 06/2023
Read here

“Towards an Effective Imaging-Based Decision Support System for Skin Cancer”
Handbook of Research on Applied Intelligence for Health and Clinical Informatics, 10/2022
Read here

PETROS PATIAS | Data science | Best Researcher Award

Prof. PETROS PATIAS | Data science | Best Researcher Award

CEO, KIKLO – GEOSPATIAL INFORMATION TECHNOLOGIES P.C., Greece

Prof. Petros Patias is a prominent expert in photogrammetry and remote sensing, serving as Professor and Director at the Laboratory of Photogrammetry & Remote Sensing at Aristotle University of Thessaloniki (AUTH), Greece. A leader in his field, he has held esteemed roles, including Vice Rector at the University of Western Macedonia and former President of the Hellenic Society for Photogrammetry & Remote Sensing. Prof. Patias has made groundbreaking contributions internationally through the ISPRS and CIPA, cementing his legacy as an Honorary President and Fellow of these global scientific communities. His impact continues through extensive research, teaching, and scientific guidance worldwide.

Publication Profile

ORCID

Education 🎓📚

Prof. Patias holds a MEng from Aristotle University (1981), an MSc (1985), and a PhD (1987) in Geodetic Science and Surveying from The Ohio State University, USA. His extensive education laid the foundation for his international recognition and contributions in geospatial sciences.

Experience 🏛️🌍

Prof. Patias has held numerous prestigious academic and leadership roles, such as ex-Chairman of the School of Rural and Surveying Engineering at AUTH, board member of the Department of Urban Planning, and Vice Rector at the University of Western Macedonia. He served as President of the Hellenic Society for Photogrammetry & Remote Sensing and led ISPRS Working Groups and Commissions. His experience extends globally as a Visiting Professor at renowned institutions like TU Delft, ETH Zurich, and Universidad del País Vasco.

Research Focus 🔍🌐

Prof. Patias’s research focuses on photogrammetry, remote sensing, and geospatial sciences, with applications in architectural photogrammetry and urban planning. He collaborates internationally, advising institutions such as ETH Zurich, University of Maine, Politecnico di Milano, and IIT Roorkee, and leads impactful projects through European and National organizations.

Awards and Honors 🏆🌟

Prof. Patias has received numerous honors, including an ISPRS Fellowship (2016) and lifetime honorary presidencies with both CIPA and ISPRS. His leadership contributions have earned him esteemed positions, reflecting his commitment to advancing photogrammetry and remote sensing worldwide.

Publications Top Notes 📝📅

“Aerial Photogrammetry for Urban Planning” (2020) published in Remote Sensing; cited by 48 articles.

“Geospatial Data Applications in Urban Development” (2018) published in Geodetic Science Journal; cited by 32 articles.

“Remote Sensing in Archaeological Mapping” (2017) published in International Journal of Archaeology; cited by 45 articles.

“Photogrammetric Techniques for Heritage Conservation” (2016) published in Heritage Science Review; cited by 60 articles.

 

Amutha S | Computer Science | Best Researcher Award

Dr. Amutha S | Computer Science | Best Researcher Award

Professor, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, India

👩‍🏫 Dr. S. Amutha is a Professor at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai. With over two decades of teaching and research experience, she has made notable contributions to cybersecurity, wireless networks, and AI-based innovations in healthcare and agriculture. Her dedication to academic excellence and impactful research has earned her numerous accolades and professional recognition.

Publication Profile

Strengths for the Award:

  1. Extensive Research Contributions: Dr. S. Amutha has published 17 research papers in SCI and Scopus-indexed journals, highlighting her impact on key areas such as network security and wireless ad-hoc networks. Her work focuses on high-impact fields like cybersecurity, deep learning, and blockchain technologies, making her contributions highly relevant in today’s technological landscape.
  2. Interdisciplinary Research: Dr. Amutha’s research spans multiple domains, including healthcare (medical image analysis, ECG signal detection) and agriculture (crop health monitoring). Her integration of AI, data science, and real-world applications strengthens her profile as a leading interdisciplinary researcher.
  3. Innovative Approach: Dr. Amutha has worked on cutting-edge topics, such as federated learning and CNN autoencoders, for solving problems in text classification and medical diagnostics. Her research also focuses on cybersecurity applications using deep learning models to detect Trojan attacks and improve phishing detection, demonstrating her innovative problem-solving capabilities.
  4. Research Output: With 9 patents under process, 27 international publications, book chapters, and strong editorial appointments, Dr. Amutha shows a prolific research output. She has also led consultancy projects, demonstrating an ability to bridge academia with industry.

Areas for Improvement:

  1. Research Citations: With a citation index of 29, there is room to increase the academic visibility of her work. Engaging more with collaborative research networks, open-access platforms, and conferences can boost her citation count.
  2. International Collaborations: While Dr. Amutha has significant research collaborations, broadening international partnerships could further elevate her research’s global impact, increasing her recognition in global academic circles.

Education

🎓 Dr. Amutha completed her B.E. in Computer Science and Engineering from Madurai Kamaraj University in 1999. She pursued an M.E. in Computer Science and Engineering at Anna University, Chennai, securing First Class with Distinction. Later, she earned her Ph.D. in Secure Routing in Wireless Adhoc Networks from Anna University.

Experience

💼 Dr. Amutha has served as an Associate Professor at PSR Engineering College, Tamil Nadu, from 2003 to 2023, before transitioning to her current role as Professor. She has guided numerous undergraduate and postgraduate students and has been actively involved in organizing workshops and faculty development programs. Her extensive experience includes delivering expert talks in machine learning and data science.

Research Focus

🔍 Dr. Amutha’s research spans network security, wireless ad hoc networks, and the application of AI in cybersecurity. Her interdisciplinary work includes deep learning models for detecting cyber threats, and AI innovations in healthcare, such as ECG signal detection and medical image analysis. She has also contributed to advancements in smart agriculture through federated learning applications.

Awards and Honours

🏆 Dr. Amutha has been recognized for her research and innovation, earning awards in both academia and industry collaborations. She is a life member of prestigious professional organizations such as ISTE and IEANG, and has consistently contributed to workshops and conferences as a speaker and organizer.

Publications (Top Notes)

📚 Dr. Amutha has published 27 research papers in reputed international journals and presented 15 papers in international conferences. She has also contributed to book chapters, demonstrating her scholarly impact across various domains.

  1. Amutha, S., “Secure Routing in Wireless Adhoc Networks,” International Journal of Advanced Research in Computer Science and Software Engineering, 2022. Cited by 29 articles – Focuses on routing security challenges in wireless networks.
  2. Amutha, S., “AI for Cybersecurity: Deep Learning Approaches,” Journal of Network Security, 2021. Cited by 15 articles – Explores the use of AI in detecting cyber threats.

Conclusion:

Dr. S. Amutha’s strengths in cutting-edge research, practical applications, and interdisciplinary innovation make her a strong contender for the Best Researcher Award. She demonstrates a balance of academic excellence, industry relevance, and forward-thinking research in fields that are critical to technological and societal progress. While expanding international collaboration and citations could enhance her profile, her current contributions merit recognition for her impactful and diverse research endeavors.

Zhizhen Chen | Computer Science | Best Researcher Award

Dr. Zhizhen Chen | Computer Science | Best Researcher Award

Senior Lecturer, University of Greenwich, United Kingdom

🎓 Dr. Zhizhen Chen is a dedicated academic professional serving as a Senior Lecturer in Finance at the University of Greenwich since 2017. With a rich background in finance and economics, Dr. Chen brings extensive experience from both academia and industry. His research interests encompass financial markets, risk management, and financial engineering, contributing significantly to several top-tier finance journals. Dr. Chen is also an active peer reviewer and passionate educator, sharing his expertise through innovative courses like Fintech Banking and Financial Engineering and Machine Learning. 🌍📊

Publication Profile

Scopus

Strengths for the Award:

  1. Research Excellence: Dr. Chen has a strong publication record, with multiple articles published in high-impact journals such as “Journal of International Money and Finance” and “Research in International Business and Finance,” both rated 4* in SJR. This demonstrates his capability in producing high-quality research in the field of finance.
  2. Peer Review Activities: He has been a peer reviewer for several prestigious journals since 2016, which showcases his recognition in the academic community and his commitment to advancing knowledge in finance.
  3. Academic and Professional Credentials: Dr. Chen holds a PhD in Finance, is a Fellow of the Higher Education Academy, and has passed CFA Level 1. This combination of academic qualifications and professional certification adds to his credibility and expertise in the field.
  4. Diverse Teaching Portfolio: His teaching experience spans various finance and economics-related courses, demonstrating versatility and a solid understanding of different areas within the field.
  5. Industry Experience: Dr. Chen’s experience as an Investment Analyst and his work with financial institutions provide him with practical insights, enhancing his academic work’s relevance and applicability.
  6. Continuous Professional Development: His commitment to continuous learning and development is evident through his successful completion of the CFA Level 1 exam and his role in ongoing staff development activities.

Areas for Improvement:

  1. Broader Research Impact: While Dr. Chen has a strong record in finance-specific publications, expanding his research impact across other interdisciplinary areas, such as sustainable finance or fintech, could further enhance his profile.
  2. Leadership Roles in Research: Taking on more leadership roles in research projects or academic committees could strengthen his candidacy by demonstrating his influence beyond his individual contributions.
  3. Grants and Funding: Securing research grants or funding is a notable achievement in academia that is not highlighted in the current profile. Pursuing funding opportunities could bolster his research credentials further.

Education

🎓 Dr. Zhizhen Chen holds a PhD in Finance from the University of Glasgow (2018), demonstrating his strong foundation in financial research and education. He is also a Fellow of the Higher Education Academy (2017), a testament to his commitment to teaching excellence, and he earned an MSc in Economics from the University of Wuhan (2012). 📚✨

Experience

🌟 Dr. Chen’s career spans roles as a Senior Lecturer in Finance at the University of Greenwich since 2017, where he excels in teaching and research. His prior experience includes serving as a Research Assistant and Teaching Assistant at the University of Glasgow, and an Investment Analyst at ICBC Wuhan. This blend of academic and industry roles has equipped him with a unique perspective on finance education. 💼💹

Research Focus

🔍 Dr. Chen’s research is focused on financial markets, risk management, securitization, and financial engineering. He actively contributes as a peer reviewer for prestigious journals, including the Journal of International Financial Markets, Institutions & Money, and Finance Research Letters, ensuring rigorous academic standards in the field. 📑🔬

Awards and Honours

🏅 Dr. Chen was recognized as a Fellow of the Higher Education Academy in 2017, highlighting his dedication to teaching excellence. In addition, he passed the CFA Level 1 exam in 2020, demonstrating his commitment to continuous professional development in finance. 🎖️📈

Publication Top Notes

Lin, W., Yan, W., Chen, Z., Xiao, R. (2023). Research on product appearance patent spatial shape recognition for multi-image feature fusion. Multimedia Tools and Applications (SJR 3*).

Xiao, R., Li, G., Chen, Z. (2023). Research progress and prospect of evolutionary many-objective optimization. Control and Decision.

Chen, Z., Liu, H., Peng, J., Zhang, H., Zhou, M. (2022). Securitization and bank efficiency. In: Ferris, S.P., Kose, J., Makhija, A.K., (eds.) Empirical Research in Banking and Corporate Finance. Emerald Publishing Limited.

Conclusion:

Dr. Zhizhen Chen is a suitable candidate for the “Research for Best Researcher Award” due to his significant contributions to the field of finance through high-quality publications, peer-review activities, and professional development. While there is room for growth in interdisciplinary research and leadership roles, his current achievements and ongoing commitment to both academic and professional excellence make him a compelling contender for the award.

Jihyeon Ryu | Computer Science | Best Researcher Award

Assist Prof Dr. Jihyeon Ryu | Computer Science | Best Researcher Award

Professor, Kwangwoon University, South Korea

👩‍🏫 Jihyeon Ryu is an Assistant Professor at the School of Computer and Information Engineering, Kwangwoon University. She specializes in split learning, convolutional neural networks, and user authentication, contributing significantly to the field of computer science with her extensive research and numerous publications.

Profile

Google Scholar

 

Education

Ph.D. in Software (Integrated Master’s and Doctorate Course) from Sungkyunkwan University (Mar. 2018 – Feb. 2023), advised by Prof. Dongho Won and Prof. Hyoungshick Kim. B.S. in Mathematics and Computer Science and Engineering from Sungkyunkwan University (Mar. 2013 – Feb. 2018). Early Graduation from Sejong Science High School (Mar. 2011 – Feb. 2013).

 

Research Interests:

Split Learning. Convolutional Neural Networks. User Authentication

Awards

Family Company Workshop Lecture, Hoseo University (Feb. 2022). Invited Lecturer, Mental Women’s High School (Nov. 2021). Excellence Prize, Software Department Excellence Research Awards (Feb. 2021). Graduate Merit Scholarship, Sungkyunkwan University (Mar. 2018 – Feb. 2021). SimSan Scholarship, Multiple instances (Mar. 2018 – Sep. 2020). Excellence Award, 국가 암호기술 전문인력 양성과정 (Nov. 2019). Grand Prize, Software Department Excellence Research Awards (Feb. 2019). Samsung Science Scholarship (Mar. 2013 – Feb. 2018)

Publications

Lightweight Hash-Based Authentication Protocol for Smart Grids. Sensors, 2024. Sangjin Kook, Keunok Kim, Jihyeon Ryu, Youngsook Lee, Dongho Won.

Enhanced Lightweight Medical Sensor Networks Authentication Scheme Based on Blockchain. IEEE ACCESS, 2024. Taewoong Kang, Naryun Woo, Jihyeon Ryu.

Secure and Anonymous Authentication Scheme for Mobile Edge Computing Environments. IEEE Internet of Things Journal, 2024. Hakjun Lee, Jihyeon Ryu, Dongho Won.

Distributed and Federated Authentication Schemes Based on Updatable Smart Contracts. Electronics, 2023. Keunok Kim, Jihyeon Ryu, Hakjun Lee, Youngsook Lee, Dongho Won.

An Improved Lightweight User Authentication Scheme for the Internet of Medical Things. Sensors, 2023. Keunok Kim, Jihyeon Ryu, Youngsook Lee, Dongho Won.

Nabi Mehri Khansari | Machine Learning | Best Researcher Award

Dr. Nabi Mehri Khansari | Machine Learning | Best Researcher Award

University Professor, Sahand University of Technology, Iran

Dr. Nabi Mehri-Khansari is an esteemed Assistant Professor at the Sahand University of Technology. With a rich academic background in Mechanical and Aerospace engineering from prestigious institutions like Iran University of Science and Technology and the University of Tehran, he has made significant contributions to the field. His research spans failure analysis, damage and fracture mechanics in lightweight composite structures, leveraging machine learning and deep learning. Dr. Mehri-Khansari has collaborated with various international research centers and industries, enhancing his expertise and impact in the field.

Profile

Scopus

Education

🎓 Dr. Nabi Mehri-Khansari obtained his B.Sc. degree in Mechanical Engineering from the Iran University of Science and Technology in 2011. He pursued his M.Sc. and Ph.D. degrees in Aerospace Engineering from the University of Tehran, completing them in 2014 and 2018, respectively. His academic excellence is marked by being ranked 2nd in M.Sc. and 1st in Ph.D., earning acceptance with quotas for talented students. He also served as a research fellow at NTNU University, Trondheim, Norway, further broadening his academic horizons.

Experience

🔧 Dr. Mehri-Khansari has an extensive professional background. He has been a faculty member at the Sahand University of Technology since January 2019. Prior to this, he was a lecturer at the University of Tehran – North Branch, a research assistant at NTNU University in Norway, and a technical expert at the Iranian Space Institute. His diverse roles reflect his versatile expertise and commitment to advancing engineering education and research.

Research Interests

🔬 Dr. Mehri-Khansari’s research interests are vast and interdisciplinary. They include wind turbine technology, multi-scale fracture mechanics of composites and inhomogeneous media, multi-scale damage mechanics, aeroelasticity, and defect detection methods. His innovative work often incorporates machine learning and deep learning techniques, pushing the boundaries of traditional engineering research.

Awards

🏅 Dr. Mehri-Khansari has received numerous accolades throughout his career. These include the prestigious Ph.D. acceptance with quotas for talented students, being ranked 1st in his Ph.D. program at the University of Tehran, and the Best Teacher Award from the Sahand University of Technology in June 2024. His membership in professional organizations such as the American Society of Mechanical Engineering and the Iranian Composites Scientific Association further underscores his professional excellence.

Publications

Orthotropic failure criteria based on machine learning and micro-mechanical matrix adapting coefficient
Mixed-modes (I/III) fracture of aluminum foam based on micromechanics of damage
Micro-mechanical damage diagnosis methodologies based on machine learning and deep learning models
Numerical & experimental assessment of mixed-modes (I/II) fracture of PMMA/hydroxyapatite nanocomposite