QIANG QU | Artificial Intelligence Award | Best Researcher Award

Prof. QIANG QU | Artificial Intelligence Award | Best Researcher Award

PROFESSOR, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Dr. Qiang Qu is a distinguished professor and a leading researcher in blockchain, data intelligence, and decentralized systems. He serves as the Director of the Guangdong Provincial R&D Center of Blockchain and Distributed IoT Security at the Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS). Additionally, he holds a professorship at Shenzhen University of Advanced Technology and has previously served as a guest professor at The Chinese University of Hong Kong (Shenzhen). Dr. Qu has also contributed as the Director and Chief Scientist of Huawei Blockchain Lab. With a strong international academic presence, he has held research positions at renowned institutions such as ETH Zurich, Carnegie Mellon University, and Nanyang Technological University. His pioneering work focuses on scalable algorithm design, data sense-making, and blockchain technologies, making significant contributions to AI, data systems, and interdisciplinary studies.

Publication Profile

๐ŸŽ“ Education

Dr. Qiang Qu earned his Ph.D. in Computer Science from Aarhus University, Denmark, under the supervision of Prof. Christian S. Jensen. His doctoral research was supported by the prestigious GEOCrowd project under Marie Skล‚odowska-Curie Actions. He further enriched his academic journey as a Ph.D. exchange student at Carnegie Mellon University, USA. He holds an M.Sc. in Computer Science from Peking University, China, and a B.S. in Management Information Systems from Dalian University of Technology.

๐Ÿ’ผ Experience

Dr. Qu has a diverse professional background, reflecting his global expertise. Since 2016, he has been a professor at SIAT, leading groundbreaking research in blockchain and distributed IoT security. He also served as Vice Director of Hangzhou Institutes of Advanced Technology (SIATโ€™s Hangzhou branch). Prior to this, he was an Assistant Professor and the Director of Dainfos Lab at Innopolis University, Russia. His research journey includes being a visiting scientist at ETH Zurich, a visiting scholar at Nanyang Technological University, and a research fellow at Singapore Management University. He also gained industry experience as an engineer at IBM China Research Lab.

๐Ÿ… Awards and Honors

Dr. Qu has received several national and international research grants, recognizing his impactful contributions to blockchain and AI-driven data intelligence. He is a prominent editorial board member of the Future Internet Journal and serves as a guest editor for multiple high-impact journals. As an active contributor to the research community, he has been a TPC (Technical Program Committee) member for prestigious conferences and regularly reviews top-tier AI and data systems journals.

๐Ÿ”ฌ Research Focus

Dr. Quโ€™s research interests revolve around data intelligence and decentralized systems, with a strong focus on blockchain, scalable algorithm design, and data-driven decision-making. His work has been instrumental in developing efficient data parallel approaches, AI-driven network analysis, and cross-blockchain data migration techniques. His interdisciplinary contributions bridge AI, IoT security, and geospatial analytics, driving innovation in secure and intelligent computing.

๐Ÿ”š Conclusion

Dr. Qiang Qu stands as a thought leader in blockchain and data intelligence, combining academic excellence with real-world impact. His contributions to AI-driven decentralized systems and scalable data solutions continue to shape the fields of computer science and IoT security. His extensive research collaborations, editorial roles, and international experience make him a key figure in advancing secure and intelligent computing technologies. ๐Ÿš€

๐Ÿ“š Publications

SNCA: Semi-supervised Node Classification for Evolving Large Attributed Graphsย โ€“ IEEE Big Data Mining and Analytics (2024). Cited in IEEE ๐Ÿ“–

CIC-SIoT: Clean-Slate Information-Centric Software-Defined Content Discovery and Distribution for IoTย โ€“ IEEE Internet of Things Journal (2024). Cited in IEEE ๐Ÿ“–

Blockchain-Empowered Collaborative Task Offloading for Cloud-Edge-Device Computingย โ€“ IEEE Journal on Selected Areas in Communications (2022). Cited in IEEE ๐Ÿ“–

On Time-Aware Cross-Blockchain Data Migrationโ€“ Tsinghua Science and Technology (2024). Cited in Tsinghua University ๐Ÿ“–

Few-Shot Relation Extraction With Automatically Generated Promptsย โ€“ IEEE Transactions on Neural Networks and Learning Systems (2024). Cited in IEEE ๐Ÿ“–

Opinion Leader Detection: A Methodological Reviewย โ€“ Expert Systems with Applications (2019). Cited in Elsevier ๐Ÿ“–

Neural Attentive Network for Cross-Domain Aspect-Level Sentiment Classificationโ€“ IEEE Transactions on Affective Computing (2021). Cited in IEEE ๐Ÿ“–

Efficient Online Summarization of Large-Scale Dynamic Networks – ย IEEE Transactions on Knowledge and Data Engineering (2016). Cited in IEEE ๐Ÿ“–

Sikandar Ali | Artificial Intelligence Award | Best Researcher Award

Dr. Sikandar Ali | Artificial Intelligence Award | Best Researcher Award

Postdoc Fellow, Inje University, South Korea

๐ŸŽ“ Sikandar Ali is a passionate AI researcher and educator specializing in Artificial Intelligence applications in healthcare. Currently pursuing a PhD at Inje University, South Korea, he has a strong academic background and extensive research experience in digital pathology, medical imaging, and machine learning. As a team leader of the digital pathology project, he develops innovative AI algorithms for cancer diagnosis while collaborating with a global team of researchers. Sikandar is a recipient of prestigious scholarships, accolades, and recognition for his contributions to AI and healthcare innovation.

Publication Profile

Google Scholar

Education

๐Ÿ“˜ Sikandar Ali holds a PhD in Artificial Intelligence in Healthcare (CGPA: 4.46/4.5) from Inje University, South Korea, where his thesis focuses on integrating pathology foundation models with weakly supervised learning for gastric and breast cancer diagnosis. He earned an MS in Computer Science from Chungbuk National University, South Korea (GPA: 4.35/4.5), with research on AI-based clinical decision support systems for cardiovascular diseases. His undergraduate degree is a Bachelor of Engineering in Computer Systems Engineering from Mehran University of Engineering and Technology, Pakistan, with a CGPA of 3.5/4.0.

Experience

๐Ÿ’ป Sikandar is an experienced researcher and AI specialist. Currently working as an AI Research Assistant at Inje University, he focuses on cutting-edge projects in digital pathology, cancer detection, and medical imaging. Previously, he worked as a Research Assistant at Chungbuk National University, focusing on cardiovascular disease diagnosis using AI. His industry experience includes roles such as Search Expert at PROGOS Tech Company and Software Developer Intern at Hidaya Institute of Science and Technology.

Awards and Honors

๐Ÿ† Sikandar has received multiple awards, including the Brain Korean Scholarship, European Accreditation Council for Continuing Medical Education (EACCME) Certificate, and recognition as an outstanding Teaching Assistant at Inje University. He has also earned full travel grants for international conferences, extra allowances for R&D industry projects, and certificates for reviewing research papers in leading journals. Additionally, he is a Guest Editor at Frontiers in Digital Health.

Research Focus

๐Ÿ”ฌ Sikandarโ€™s research focuses on developing AI algorithms for medical imaging, with expertise in weakly supervised learning, self-supervised learning, and digital pathology. His projects include designing AI systems for cancer detection, COVID-19 prediction, and IPF severity classification. He also works on object detection applications using YOLO models and wearable sensor-based activity detection for pets. His commitment to explainability and interpretability in AI models ensures their practical utility in healthcare.

Conclusion

๐ŸŒŸ Sikandar Ali is a dedicated AI researcher driving innovation in healthcare through artificial intelligence. With his strong educational foundation, diverse research experience, and impactful contributions, he aims to bridge the gap between AI and medicine, making healthcare more efficient and accessible.

Publications

Detection of COVID-19 in X-ray Images Using DCSCNN
Sensors 2022, IF: 3.4

A Soft Voting Ensemble-Based Model for IPF Severity Prediction
Life 2021, IF: 3.2

Metaverse in Healthcare Integrated with Explainable AI and Blockchain
Sensors 2023, IF: 3.4

Weakly Supervised Learning for Gastric Cancer Classification Using WSIs
Springer 2023

Classifying Gastric Cancer Stages with Deep Semantic and Texture Features
ICACT 2024

Computer Vision-Based Military Tank Recognition Using YOLO Framework
ICAISC 2023

Activity Detection for Dog Well-being Using Wearable Sensors
IEEE Access 2022

Cat Activity Monitoring Using Wearable Sensors
IEEE Sensors Journal 2023, IF: 4.3

Deep Learning for Algae Species Detection Using Microscopic Images
Water 2022, IF: 2.9

Comprehensive Review on Multiple Instance Learning
Electronics 2023

Hybrid Model for Face Shape Classification Using Ensemble Methods
Springer 2021

Cervical Spine Fracture Detection Using Two-Stage Deep Learning
IEEE Access 2024

 

Ching-Lung Fan | Deep Learning | Best Researcher Award

Assoc. Prof. Dr. Ching-Lung Fan | Deep Learning | Best Researcher Award

Associate Professor, ROC Military Academy, Taiwan

Ching-Lung Fan is an associate professor in Civil Engineering at the Republic of China Military Academy. He completed his Ph.D. in 2019 from the National Kaohsiung University of Science and Technology. His professional journey reflects a strong dedication to advancing technology in the construction and civil engineering sectors, particularly through the application of machine learning and deep learning methods. ๐Ÿซ

Publication Profile

Education

Dr. Fan holds a Master of Science (M.S.) from National Taiwan University (2006) and a Ph.D. from National Kaohsiung University of Science and Technology (2019). His academic background underscores his commitment to both theoretical and practical contributions to the field. ๐ŸŽ“

Experience

Dr. Fan started his academic career as an assistant professor at the Republic of China Military Academy in January 2019 and was promoted to associate professor in June 2022. His teaching and research experience has significantly impacted the study of civil engineering, especially through the integration of machine learning and data mining. ๐Ÿข

Awards and Honors

Ching-Lung Fan has received several prestigious awards, including the Phi Tau Phi Scholastic Honor (2019), Outstanding Paper Award (2021), Excellent Paper Award (2022), and Best Researcher Award (2024). In 2023, he was honored with membership in Sigma Xi, an esteemed scientific organization. ๐Ÿ…

Research Focus

Dr. Fanโ€™s research interests are primarily centered around machine learning, deep learning, data mining, construction performance evaluation, and risk management. His work integrates cutting-edge computational methods with civil engineering applications to enhance the quality and efficiency of construction projects. ๐Ÿค–๐Ÿ“Š

Conclusion

Dr. Fan’s innovative contributions to civil engineering, particularly in the realm of AI-driven solutions, continue to shape the future of construction and infrastructure development. His ongoing research and recognition in the academic community highlight his expertise and impact in the field. ๐ŸŒŸ

Publications

ย Integrating image processing technology and deep learning to identify crops in UAV orthoimages. CMC-Computers, Materials & Continua. (Accepted).

Predicting the construction quality of projects by using hybrid soft computing techniques. CMES-Computer Modeling in Engineering & Sciences. (Accepted).

ย Evaluation model for crack detection with deep learningโ€”Improved confusion matrix based on linear features. Journal of Construction Engineering and Management (ASCE), 151(3): 04024210. (SCI).

ย Evaluating the performance of Taiwan airport renovation projects: An application of multiple attributes intelligent decision analysis. Buildings, 14(10): 3314. (SCI).

Deep neural networks for automated damage classification in image-based visual data of reinforced concrete structures. Heliyon, 10(19): e38104. (SCI).

Multiscale feature extraction by using convolutional neural network: Extraction of objects from multiresolution images of urban areas. ISPRS International Journal of GeoInformation, 13(1): 5. (SCI).

Ground surface structure classification using UAV remote sensing images and machine learning algorithms. Applied Geomatics, 15: 919-931. (ESCI).

ย Using convolutional neural networks to identify illegal roofs from unmanned aerial vehicle images. Architectural Engineering and Design Management, 20(2): 390-410. (SCI).

Evaluation of machine learning in recognizing images of reinforced concrete damage. Multimedia Tools and Applications, 82: 30221-30246. (SCI).

ย Supervised machine learningโ€“Based detection of concrete efflorescence. Symmetry, 14(11): 284. (SCI).

 

sajjad qureshi | Artificial Intelligence Award | Computer Vision Contribution Award

Dr. sajjad qureshi | artificial intelligence award | Computer Vision Contribution Award

deputy Director (IT), multan electric power company, Pakistan

๐Ÿ“˜ Dr. Sajjad Hussain Qureshi is a seasoned professional with over 21 years of experience in Information Technology. Currently serving as the Deputy Director (IT) at Multan Electric Power Company for the past two decades, Dr. Qureshi has established expertise in system analysis and design, machine learning, cybersecurity, IT auditing, and project management. His multidisciplinary educational background, including a Ph.D. in Computer Science, Ph.D. in Agriculture, and an MBA in Human Resource Management, has enabled him to excel in IT-based quality assurance, data analysis, and human resource management. He is passionate about utilizing cutting-edge technologies to create impactful solutions in diverse domains.

Publication Profile

ORCID

Education

๐ŸŽ“ Dr. Qureshi holds a Ph.D. in Computer Science, a Ph.D. in Agriculture, and an MBA in Human Resource Management. His diverse academic achievements reflect his commitment to integrating IT with interdisciplinary knowledge for impactful research and practical solutions.

Experience

๐Ÿ’ผ Dr. Qureshi has an extensive career spanning over 21 years in the IT field. For the last 20 years, he has been a cornerstone of the Multan Electric Power Company, where he serves as the Deputy Director (IT). His experience covers IT infrastructure development, LAN networks, client/server environments, cybersecurity, and customer billing systems. He also excels in IT-based quality assurance and control, project management, and data management.

Research Interests

๐Ÿ” Dr. Qureshiโ€™s research interests lie at the intersection of machine learning, deep learning, cybersecurity, data management, and agriculture technology. He is particularly interested in applying advanced computational techniques to solve real-world problems, such as disease detection in crops and classification of linguistic data.

Awards

๐Ÿ† Dr. Qureshi has been recognized for his contributions to IT and interdisciplinary research, achieving notable academic and professional milestones. His work continues to inspire innovation and collaboration across diverse fields.

Publications

Classification of English Words into Grammatical Notations Using Deep Learning Technique (2024)
Imran, M., Qureshi, S. H., Qureshi, A. H., & Almusharraf, N.
Published in Information, 15(12), 801.
DOI: 10.3390/info15120801

Rational Study Of The Use Of Computer-Aided Softwares By The Composers (2024)
Qureshi, S. H., Javaid, S., & Javaid, M. A.
Published in Pakistan Journal of Society, Education and Language, 10(2), 213โ€“219.

Comparison of Conventional and Computer-Based Detection of Severity Scales of Stalk Rot Disease in Maize (2024)
Qureshi, S.H., Khan, D.M., Razzaq, A., Baig, M.M., & Bukhari, S.Z.A.
Published in SABRAO Journal of Breeding and Genetics, 56(1), 292โ€“301.
DOI: 10.54910/sabrao2024.56.1.26

Intelligent Resistant Source Detection Against Stalk Rot Disease of Maize Using Deep Learning Technique (2023)
Qureshi, S.H., Khan, D.M., & Bukhari, S.Z.
Published in SABRAO Journal of Breeding and Genetics, 55(6), 1972โ€“1983.

Carolina Magalhรฃes | Machine Learning | Best Researcher Award

Dr. Carolina Magalhรฃes | Machine Learning | Best Researcher Award

Investigadora, INEGI โ€“ Instituto de Ciรชncia e Inovaรงรฃo em Engenharia Mecรขnica e Industrial, Portugal

๐Ÿ‘ฉโ€๐Ÿ”ฌ Carolina Magalhรฃes is a dedicated biomedical engineer and PhD candidate with expertise in applying AI and imaging technologies to healthcare challenges. Based in Porto, Portugal, she combines her passion for modern technology with a problem-solving mindset to develop innovative solutions in skin cancer diagnostics. Carolina has worked collaboratively with clinical experts to bridge research and practical applications, contributing significantly to advancing imaging-based decision support systems.

Publication Profile

ORCID

Education

๐ŸŽ“ Carolina holds a PhD in Biomedical Engineering from the Faculdade de Engenharia da Universidade do Porto (2020โ€“2024). She also completed her MSc in Biomedical Engineering at the same institution (2016โ€“2018) and earned her Bachelorโ€™s in Bioengineering – Biomedical Engineering from Universidade Catรณlica Portuguesa (2013โ€“2016).

Experience

๐Ÿ’ผ Carolina has a rich research background, currently serving as a Graduate Research Fellow at INEGI, focusing on skin lesion diagnosis using multispectral imaging. Her work spans from leveraging machine learning models for skin cancer classification to thermal and UV imaging techniques. Previously, she contributed to projects on hyperhidrosis diagnosis, prosthetic device design, and thermal image analysis for musculoskeletal disorders, collaborating with leading hospitals and research centers in Portugal.

Research Interests

๐Ÿ”ฌ Carolina is passionate about exploring artificial intelligence, machine learning, and advanced imaging technologies for healthcare applications. Her interests include developing multispectral imaging systems, improving diagnostic tools for skin cancer, and advancing infrared thermography for clinical support systems.

Awards

๐Ÿ† Carolinaโ€™s innovative work has been recognized with prestigious research grants from the Foundation for Science and Technology (SFRH/BD/144906/2019) and other funding organizations. These awards have supported her impactful contributions to biomedical engineering and healthcare innovation.

Publications

“Systematic Review of Deep Learning Techniques in Skin Cancer Detection”
BioMedInformatics, 11/2024
Read here

“Skin Cancer Image Classification with Artificial Intelligence Strategies: A Systematic Review”
Journal of Imaging, 10/2024
Read here

“Use of Infrared Thermography for Abdominoplasty Procedures in Patients with Extensive Subcostal Scars: A Preliminary Analysis”
Plast Reconstr Surg Glob Open, 06/2023
Read here

“Classic Versus Scarpa-Sparing Abdominoplasty: An Infrared Thermographic Comparative Analysis”
J Plast Reconstr Aesthet Surg, 06/2023
Read here

“Towards an Effective Imaging-Based Decision Support System for Skin Cancer”
Handbook of Research on Applied Intelligence for Health and Clinical Informatics, 10/2022
Read here

Sara Tehsin | Deep learning | Best Researcher Award

Ms. Sara Tehsin | Deep learning | Best Researcher Award

PhD Student, National University of Sciences and Technology, Islamabad, Pakistan

Sara Tehsin is a motivated and results-driven professional with over ten years of experience in Image Processing and Machine Learning. As an Engineering Lecturer at HITEC University in Taxila, Pakistan, she excels in delivering high-quality educational experiences and has a proven track record of producing outstanding results through her strong work ethic, adaptability, and effective communication skills. She is passionate about academic development and seeks opportunities to contribute her expertise while furthering her professional growth. ๐Ÿ“š๐Ÿ’ป

Publication Profile

Google Scholar

Education

Sara Tehsin is currently pursuing a PhD in Computer Engineering at the National University of Sciences and Technology (NUST), Islamabad, where she has achieved a remarkable GPA of 3.83/4.00. Her research focuses on Digital Forensics, Deep Learning, and Digital Image Processing. She holds a Masterโ€™s degree in Computer Engineering from NUST, where she graduated with a GPA of 3.7/4.0, and a Bachelorโ€™s degree from The Islamia University of Bahawalpur, with a GPA of 3.36/4.00. ๐ŸŽ“๐ŸŒŸ

Experience

Sara has extensive teaching experience, currently serving as an Engineering Lecturer at HITEC University since September 2019, where she develops engaging curriculum and delivers lectures aligned with international standards. Previously, she was a Computer Science Lecturer at Sharif College of Engineering and Technology, and she also served as a Teaching Assistant at NUST and a Lab Engineer at Foundation University. Her roles have encompassed curriculum development, practical instruction, and student support in various computer science subjects. ๐Ÿ‘ฉโ€๐Ÿซ๐Ÿ”ง

Research Interests

Sara’s research interests encompass Digital Forensics, Deep Learning, Digital Image Processing, and Machine Learning. She focuses on developing innovative solutions for image recognition and forgery detection, contributing significantly to the fields of computer vision and machine learning. Her work aims to enhance the accuracy and efficiency of image processing systems. ๐Ÿง ๐Ÿ”

Publications

Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition
S. Tehsin, S. Rehman, M.O.B. Saeed, F. Riaz, A. Hassan, M. Abbas, R. Young, …
IEEE Access, 5, 24495-24502 (2017)
Cited by: 21

Improved maximum average correlation height filter with adaptive log base selection for object recognition
S. Tehsin, S. Rehman, A.B. Awan, Q. Chaudry, M. Abbas, R. Young, A. Asif
Optical Pattern Recognition XXVII, 9845, 29-41 (2016)
Cited by: 18

Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments
S. Tehsin, S. Rehman, F. Riaz, O. Saeed, A. Hassan, M. Khan, M.S. Alam
Pattern Recognition and Tracking XXVIII, 10203, 28-39 (2017)
Cited by: 12

Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter
S. Tehsin, S. Rehman, A. Bilal, Q. Chaudry, O. Saeed, M. Abbas, R. Young
Pattern Recognition and Tracking XXVIII, 10203, 22-37 (2017)
Cited by: N/A

Tesfay Gidey | Artificial Intelligence | Best Researcher Award

Dr. Tesfay Gidey | Artificial Intelligence | Best Researcher Award

Lecturer, Addis Ababa Science and Technology University, Ethiopia

Tesfay Gidey Hailu is a highly skilled Information and Communication Engineer and data scientist with a passion for leveraging data to drive innovation and business insights. With expertise in computer science, software engineering, machine learning, and data analytics, he excels in problem-solving, leadership, and technology project management. Tesfay’s work focuses on indoor localization, signal processing, and health data applications, making him a forward-thinking leader in his field. His dedication to continuous learning and delivering actionable results underscores his impressive career in academia and industry. ๐Ÿ’ผ๐Ÿ”ง๐Ÿ“Š

Publication Profile

ORCID

Strengths for the Award:

  1. Diverse Expertise: Tesfay’s expertise spans across critical areas such as signal processing, indoor localization, machine learning, data fusion, and health informatics, aligning well with cutting-edge research areas.
  2. Impressive Academic Qualifications: Holding a Ph.D. in Information and Communication Engineering, along with two MSc degrees, he possesses deep knowledge in interdisciplinary fields.
  3. Research Contributions: He has authored numerous peer-reviewed publications in high-impact journals such as Sensors, Intelligent Information Management, and Journal of Biostatistics. His work in Wi-Fi indoor positioning, predictive modeling, and health informatics shows a broad application of research across industries.
  4. Leadership in Academia: His roles as Associate Dean and Head of Department demonstrate his leadership in driving research, improving curriculum quality, and promoting technology transfer.
  5. Innovative Research Focus: His Ph.D. dissertation on transfer learning for fingerprint-based indoor positioning and various data fusion methods reflect his innovative contributions to solving real-world problems with advanced technologies.

Areas for Improvement:

  1. Broader Industry Impact: While his research is highly academic, incorporating more industry-driven collaborations or commercial applications could strengthen the practical impact of his work.
  2. Public Engagement: Increasing public outreach and collaboration with non-academic sectors or public talks could elevate his visibility and expand the impact of his research findings.
  3. Global Collaboration: Expanding his research collaborations beyond local and regional levels, particularly with international industries, could further showcase the global relevance of his work.

Education ๐ŸŽ“

Tesfay holds a Ph.D. in Information and Communication Engineering from the University of Electronic Science and Technology of China (2023), where his research centered on signal and information processing applied to indoor positioning using machine learning algorithms. He also earned an MSc in Software Engineering from HILCOE School of Computer Science and Information Technology (2018) and an MSc in Health Informatics and Biostatistics from Mekelle University (2013). Additionally, he completed his BSc in Statistics with a minor in Computer Science at Addis Ababa University (2006). ๐Ÿ“š๐Ÿ’ป๐Ÿ“ˆ

Experience ๐Ÿ’ผ

Tesfay has held several leadership positions, including Associate Dean at Addis Ababa Science and Technology University (AASTU), where he led research, technology transfer, student recruitment, and faculty training initiatives. He was also the Head of Department and Coordinator at Jimma University, contributing to curriculum enhancement and student retention programs. His experience spans research in manufacturing industries, project management, and academic administration. ๐Ÿซ๐Ÿ“Š๐Ÿ‘จโ€๐Ÿซ

Research Focus ๐Ÿ”ฌ

Tesfay’s research focuses on signal processing, indoor localization, machine learning, data mining, and information fusion. He specializes in developing advanced models for indoor positioning systems, predictive modeling, and statistical quality control, aiming to solve complex problems in health informatics, manufacturing industries, and public health. His work integrates cutting-edge technologies to advance both theoretical and applied fields. ๐Ÿ“ก๐Ÿ“‰๐Ÿค–

Awards and Honors ๐Ÿ†

Tesfay has been recognized for his contributions to the fields of information and communication engineering and data science. He has received multiple awards and honors for his research and leadership roles in academia, particularly in driving innovative projects that bridge the gap between technology and industry. ๐ŸŒ๐ŸŽ–๏ธ

Publications Highlights ๐Ÿ“š

Tesfay has published extensively in top-tier journals, with a focus on indoor positioning systems, data fusion, and health informatics. His research includes the development of novel machine learning models and statistical analysis tools. His works have been widely cited, showcasing his impact in the academic community. ๐Ÿ“Šโœ๏ธ

MultiDMet: Designing a Hybrid Multidimensional Metrics Framework to Predictive Modeling for Performance Evaluation and Feature Selection (2023). Intelligent Information Management, 15, 391-425. Cited by 2 articles. Link

Data Fusion Methods for Indoor Positioning Systems Based on Channel State Information Fingerprinting (2022). Sensors, 22, 8720. Cited by 15 articles. Link

Heterogeneous Transfer Learning for Wi-Fi Indoor Positioning Based Hybrid Feature Selection (2022). Sensors, 22, 5840. Cited by 10 articles. Link

OHetTLAL: An Online Transfer Learning Method for Fingerprint-Based Indoor Positioning (2022). Sensors, 22, 9044. Cited by 5 articles. Link

A Multilevel Modeling Analysis of the Determinants and Cross-Regional Variations of HIV Testing in Ethiopia (2016). J Biom Biostat, 7, 277. Cited by 8 articles. Link

Conclusion:

Tesfay Gidey Hailu’s robust academic background, extensive research portfolio, and leadership roles make him a strong candidate for the Best Research Award. His work in signal processing, machine learning, and data-driven innovation in health informatics and communication systems demonstrates a clear commitment to advancing technology and solving societal problems. While his impact could be enhanced by deeper industry collaborations and global outreach, his current achievements already reflect substantial contributions to the field, making him deserving of recognition.

 

Dongbeom Kim | Artificial Intelligence | Best Researcher Award

Mr. Dongbeom Kim | Artificial Intelligence | Best Researcher Award

Master’s Student, University of Seoul, South Korea

Dongbeom Kim is a dedicated Masterโ€™s student at the University of Seoul, specializing in Geoinformatics under the mentorship of Professor Chulmin Jun. With a robust academic background in Geography and a passion for innovative research, Dongbeom is actively engaged in developing smart systems for urban planning and vehicle safety. His work spans advanced studies in fire evacuation simulations, the application of artificial intelligence in urban growth modeling, and the development of safe driving systems for two-wheeled vehicles. ๐Ÿ“Š๐Ÿ›ต

Publication Profile

Strengths for the Award:

  1. Academic Background: Dongbeom Kim has a solid educational foundation in Geography and Geoinformatics, with high GPAs in both his undergraduate and current Master’s studies. His ongoing education in Geoinformatics at the University of Seoul under the guidance of a reputed advisor further strengthens his research credentials.
  2. Research Publications: He has authored several papers published in reputable SCIE/ESCI journals like Sensors and Applied Sciences, along with multiple domestic publications. His research spans various topics, including fire evacuation simulations, vehicle safety, and urban growth modeling, indicating a diverse research portfolio.
  3. Conferences and Presentations: Dongbeom Kim has actively presented his research at several international and national conferences, such as the 18th International Conference on Location Based Services in Belgium and the Korean Society for Geospatial Information Science. These experiences highlight his engagement with the academic community and his ability to communicate his research effectively.
  4. Patents and Innovation: He is a co-inventor on four patents related to vehicle safety and route generation, demonstrating innovation and practical application of his research.
  5. Research Projects: Participation in multiple research projects, including those focused on greenhouse gas emission reduction and environmental big data analysis, shows his capability to contribute to significant scientific endeavors.

Areas for Improvement:

  1. Research Leadership: While Dongbeom Kim has collaborated on numerous projects and publications, there is limited evidence of him taking on a leading role in these efforts. Demonstrating more leadership in research projects or publications could strengthen his profile.
  2. Diversity in Research Impact: Although his research covers a range of topics, the majority are closely related to vehicle safety and geospatial data analysis. Expanding his research to cover other areas of geoinformatics or interdisciplinary applications could enhance the breadth of his research impact.
  3. Published Impact Factor: As some of his research is still under review and the impact factors of the journals in which he has published are not mentioned, highlighting the impact factor or citation index of his published work could further substantiate his research quality.

 

Education

Dongbeom holds a Bachelorโ€™s degree in Geography from Kongju National University (2015-2021), achieving a GPA of 3.9/4.5. He is currently pursuing a Masterโ€™s degree in Geoinformatics at the University of Seoul, where he has achieved an impressive GPA of 4.33/4.5. ๐ŸŽ“๐ŸŒ

Experience

Dongbeom’s experience includes multiple research projects, focusing on geospatial information science, urban growth modeling, and traffic safety. He has contributed to several conferences and published numerous peer-reviewed articles in international journals. His practical skills are reinforced by his active involvement in projects such as the development of a good driving evaluation system for two-wheeled vehicles and environmental big data analysis. ๐ŸŒ๐Ÿ“

Research Focus

Dongbeomโ€™s research primarily revolves around geoinformatics, fire evacuation simulations, urban growth modeling, and traffic safety. He is particularly interested in utilizing sensor-based approaches and artificial intelligence techniques to address urban challenges and enhance public safety. ๐Ÿš’๐ŸŒ†

Awards and Honors

Dongbeom has presented his work at prestigious international and domestic conferences and has collaborated on innovative projects that have received national attention. He is also recognized for his contributions to patents related to traffic safety and environmental management. ๐Ÿ†๐Ÿ”ฌ

Publication Top Notes

Under Review: Dongbeom Kim, Hyemin Kim, Yuhan Han, Chulmin Jun, “Fire Evacuation Simulation with Agent-Based Fire Recognition Propagation” (Physica Scripta, 2024)

Dongbeom Kim, Hyemin Kim, Suyun Lee, Qyoung Lee, Minwoo Lee, Jooyoung Lee, Chulmin Jun, “Design and Implementation of a Two-Wheeled Vehicle Safe Driving Evaluation System” (Sensors, 2024) – Cited by 2 articles

Dongbeom Kim, Hyemin Kim, Chulmin Jun, “The Detection of Aggressive Driving Patterns in Two-Wheeled Vehicles Using Sensor-Based Approaches” (Applied Sciences, 2023) – Cited by 3 articles

Minjun Kim, Dongbeom Kim, Daeyoung Jin, Geunhan Kim, “Application of Explainable Artificial Intelligence (XAI) in Urban Growth Modeling: A Case Study of Seoul Metropolitan Area, Korea” (Land, 2023) – Cited by 5 articles

Suyun Lee, Dongbeom Kim, Chulmin Jun, “Calculation of Dangerous Driving Index for Two-Wheeled Vehicles Using the Analytic Hierarchy Process” (Applied Sciences, 2023) – Cited by 1 article

Minjun Kim, Dongbeom Kim, Geunhan Kim, “Examining the Relationship between Land Use/Land Cover (LULC) and Land Surface Temperature (LST) Using Explainable Artificial Intelligence (XAI) Models: A Case Study of Seoul, South Korea” (International Journal of Environmental Research and Public Health, 2022) – Cited by 4 articles ๐Ÿ“–๐Ÿ”—

Conclusion:

Dongbeom Kim appears to be a promising candidate for the “Best Researcher Award” due to his solid academic background, active research publication record, involvement in innovative patents, and participation in impactful research projects. To further strengthen his candidacy, he could focus on assuming leadership roles in his research, diversifying his research impact, and emphasizing the citation metrics of his work. Overall, his contributions to the field of geoinformatics and vehicle safety suggest he is a strong contender for this award.

Rahma Mani | Artificial Intelligence | Women Researcher Award

Ms. Rahma Mani | Artificial Intelligence | Women Researcher Award

PhD student, Escuela Tรฉcnica Superior de Ingenierรญa Informรกtica, ETSII, Spain

Rahma Mani is a dedicated Ph.D. candidate in Electrical Engineering and Computer Science at the University of Seville, Spain, with a deep passion for wireless sensor networks, machine learning, and artificial intelligence. With a strong foundation in electrical engineering from the National Engineering School of Monastir, Tunisia, she has demonstrated her expertise through various academic and professional roles. Rahma has contributed to significant research projects and has a keen interest in innovative technologies.

Publication Profile

 

Strengths for the Award:

  1. Academic Excellence: Rahma is currently pursuing a Ph.D. in Electrical Engineering and Computer Science, focusing on cutting-edge fields such as wireless sensor networks, machine learning, and artificial intelligence. Her educational background is robust and well-aligned with emerging technological fields.
  2. Research Contributions: Rahma has multiple publications in reputable journals and conferences, including a submission to the prestigious Pervasive and Mobile Computing Journal by Elsevier. Her research in wireless sensor networks demonstrates innovation and contributes significantly to the field.
  3. Global Perspective: Rahmaโ€™s North African upbringing combined with her international academic and professional experiences in Spain, Italy, France, and Tunisia give her a unique global perspective. This diversity enhances her ability to approach problems from different angles, which is a valuable asset in research.
  4. Technical Skills: She possesses a wide range of digital and programming skills, including proficiency in languages like Java, C++, and MATLAB, as well as experience with technologies such as Vivado and Arduino. These skills are critical for her research and development work.
  5. Leadership and Innovation: Rahma demonstrated leadership in her role as the Electrical Committee leader in the ENIM TEAM, where she led the development of an electric car for an international competition. Her involvement in volunteer activities also highlights her leadership abilities and commitment to social causes.
  6. Language Proficiency: Fluent in English, Arabic, and French, with basic Spanish, Rahma’s multilingual capabilities are a significant asset in collaborative international research.

Areas for Improvement:

  1. Broader Research Exposure: While Rahma has a strong publication record, expanding her research impact by collaborating on interdisciplinary projects or participating in more international conferences could further enhance her profile.
  2. Advanced Certifications: Although Rahma has quality management certifications, pursuing advanced certifications related to her research areas (e.g., specialized AI or wireless communication certifications) could strengthen her expertise.
  3. Industry Collaboration: Increasing her engagement with industry partners, beyond internships, through joint research projects or consulting roles could provide practical applications for her research, enhancing its relevance and impact.

 

๐ŸŽ“ Education:

Rahma is currently pursuing her Ph.D. in Electrical Engineering and Computer Science at the University of Seville, Spain, specializing in wireless sensor networks, machine learning, and artificial intelligence. She earned her Electrical Engineering Diploma from the National Engineering School of Monastir, Tunisia, where she also led a team in designing and developing an electric car for an international competition. Rahma began her academic journey with preparatory engineering studies at the Preparatory Institute for Engineering Studies of Monastir, Tunisia.

๐Ÿ’ผ Experience:

Rahma has gained extensive experience as an adjunct professor at the Higher Institute of Applied Sciences and Technology of Mahdia, Tunisia, where she taught courses on digital signal processing, converters, and electrical machines. She also worked as a Junior Full Stack Engineer at HRDatabank Tunisia (WILL Group, Japan), contributing to the development of HR web applications. Additionally, Rahma has completed internships at Smart Sensors Systems (3S) in Nancy, France, and the Tunisian Electricity and Gas Company in Sousse, Tunisia.

๐Ÿ”ฌ Research Focus:

Rahma’s research focuses on wireless sensor networks, particularly in the areas of localization algorithms, edge computing, and FPGA-enhanced systems. She is passionate about applying machine learning and artificial intelligence techniques to improve the efficiency and reliability of sensor networks, especially in large-scale and industrial applications.

๐Ÿ† Awards and Honors:

Rahma received a merit-based fellowship to pursue her Ph.D. internship in Italy and Spain, recognizing her outstanding academic and research achievements.

๐Ÿ“š Publication Top Notes:

Localizing Unknown Nodes with an FPGA-Enhanced Edge Computing UAV in Wireless Sensor Networks: Implementation and Evaluation (2024)

Improved 3D localization algorithm for large-scale wireless sensor networks (2023).

Improved Distance vector-based Kalman Filter localization algorithm for wireless sensor network (2023) .

CRT-LoRa: An efficient and reliable MAC scheme for real-time industrial applications (2023).

Improved Least-Square DV-Hop Algorithm for Localization in Large Scale Wireless Sensor Network (2022) .

 

Conclusion:

Rahma Mani is a well-qualified candidate for the Research for Women Researcher Award. Her solid academic background, impressive research contributions, technical expertise, and leadership qualities make her a strong contender. With continued focus on expanding her research impact and industry collaborations, she is likely to make significant contributions to the field of Electrical Engineering and Computer Science, particularly in the areas of wireless sensor networks and AI. Her application for the award would be well-justified, showcasing both her achievements and potential for future advancements.