Dr. Jiaheng Peng | Data Science | Best Researcher Award

Dr. Jiaheng Peng | Data Science | Best Researcher Award

PhD Candidate, East China Normal University, China

Jiaheng Peng is a dedicated Ph.D. candidate at East China Normal University, specializing in Open Source Ecosystem, Natural Language Processing, and Evaluation Science. With a strong academic record and a passion for research, he has contributed significantly to understanding Open Source dataset evaluation. His work bridges the gap between academic research and real-world Open Source applications, earning him recognition in the field.

Publication Profile

Google Scholar

🎓 Academic Background

Jiaheng Peng is pursuing his Ph.D. at East China Normal University, focusing on innovative methods to assess Open Source datasets. His research emphasizes citation network analysis, evaluating long-term dataset usage, and developing advanced Natural Language Processing (NLP) models. His academic journey is marked by high-impact publications in top-tier journals and international conferences, reflecting his expertise in computational analysis and data evaluation.

👨‍💼 Professional Experience

Although Jiaheng does not have industry consultancy or ongoing research projects, his scholarly contributions have made a substantial impact on Open Source ecosystem analysis. He actively publishes in high-impact scientific journals and conferences, ensuring that his findings help enhance dataset evaluation metrics. His commitment to advancing data-driven methodologies sets a solid foundation for future research in Open Source analysis.

🏆 Awards and Honors

Jiaheng Peng’s research excellence has been acknowledged with the Best Paper Award at the 1st Open Source Technology Academic Conference (2024). His publications in Q1-ranked journals further highlight his academic impact. His continuous contributions to the Open Source community demonstrate his dedication to advancing research and innovation in Open Source evaluation.

🔬 Research Focus

Jiaheng’s research primarily addresses the limitations of traditional Open Source data insight metrics. His work connects Open Source datasets with their corresponding academic papers, evaluating their significance through citation network mining. By bridging Open Source data with academic insights, he introduces novel evaluation methodologies that enhance dataset usability and long-term impact analysis. His research also extends into Aspect-Based Sentiment Classification, employing advanced Graph Attention Networks and NLP models to extract meaningful insights.

📌 Conclusion

Jiaheng Peng is a rising scholar in the Open Source and NLP domains, with a keen focus on dataset evaluation, citation network analysis, and sentiment classification. His academic contributions, recognized through prestigious awards and top-tier publications, establish him as a promising researcher dedicated to advancing Open Source dataset analytics. With a commitment to scientific excellence, his work continues to influence the global research community.

📚 Publication Top Notes

Evaluating long-term usage patterns of open source datasets: A citation network approach
BenchCouncil Transactions on Benchmarks, Standards and Evaluations (2025)
Cited by: Pending

DRGAT: Dual-relational graph attention networks for aspect-based sentiment classification
Information Sciences (2024)
Cited by: Pending

Data Driven Visualized Analysis: Visualizing Global Trends of GitHub Developers with Fine-Grained Geo-Details
International Conference on Database Systems for Advanced Applications (2024)
Cited by: Pending

ASK-RoBERTa: A pretraining model for aspect-based sentiment classification via sentiment knowledge mining”
Knowledge-Based Systems (2022)
Cited by: Multiple researchers in NLP and sentiment analysis

Zhe PENG | Data Analytics | Best Researcher Award

Prof. Zhe PENG | Analytics | Best Researcher Award

Assistant Professor, The Hong Kong Polytechnic University, Hong Kong

Dr. Zhe Peng  is a dedicated Research Assistant Professor at the Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University. With a strong background in computer science and engineering, he specializes in intelligent supply chains, AI for manufacturing, and blockchain technologies. His contributions to blockchain, federated learning, and decentralized identity systems have earned him global recognition. With extensive academic and industry experience, Dr. Peng has made a significant impact on cutting-edge technological advancements.

Publication Profile

🎓 Education

Dr. Peng holds a Ph.D. in Computer Science from The Hong Kong Polytechnic University (2018), under the supervision of Prof. Bin Xiao (IEEE Fellow). He earned his M.E. in Information and Communication Engineering from the University of Science and Technology of China (2013) and a B.E. in Communication Engineering from Northwestern Polytechnical University (2010). His academic journey reflects his deep expertise in computing, communication, and AI-driven systems.

💼 Experience

Dr. Peng has held multiple research and industry positions. He is currently a Research Assistant Professor at The Hong Kong Polytechnic University. Previously, he served as a Research Assistant Professor at Hong Kong Baptist University (2020-2023) and as an R&D Manager at the Blockchain and FinTech Lab. In the industry, he worked as the Blockchain Technical Director at SF Technology in Shenzhen (2018-2019). Additionally, he was a Visiting Scholar at Stony Brook University, USA, working under Distinguished Prof. Yuanyuan Yang (IEEE Fellow).

🏆 Awards and Honors

Dr. Peng has received several prestigious awards, including the World’s Top 2% Scientists by Stanford University (2024) and the Award for High SFQ Score at PolyU ISE (2024). He was recognized with an ESI Highly Cited Paper (2023) and received the DASFAA-MUST Best Paper Award (2021). His work was also nominated for THE Awards Asia – Technological or Digital Innovation of the Year (2021). His numerous accolades highlight his contributions to academia, research, and technological innovation.

🔬 Research Focus

Dr. Peng’s research revolves around intelligent supply chains, AI-driven manufacturing, blockchain applications, and autonomous systems. His work on verifiable decentralized identity management, privacy-aware federated learning, and blockchain security has set new benchmarks in these fields. He continues to explore innovative solutions to improve efficiency, transparency, and security in digital ecosystems.

🔚 Conclusion

Dr. Zhe Peng is a visionary researcher at the intersection of AI, blockchain, and smart logistics. His groundbreaking research, academic excellence, and industry experience make him a leading expert in his field. Through his contributions to intelligent systems, federated learning, and blockchain security, he continues to shape the future of technological innovation. 🚀

🔗 Publications 

Lightweight Multimodal Defect Detection at the Edge via Cross-Modal Distillation

VDID: Blockchain-Enabled Verifiable Decentralized Identity Management for Web 3.0 

SymmeProof: Compact Zero-Knowledge Argument for Blockchain Confidential Transactions 

The Impact of Life Cycle Assessment Database Selection on Embodied Carbon Estimation of Buildings 

EPAR: An Efficient and Privacy-Aware Augmented Reality Framework for Indoor Location-Based Services

VFChain: Enabling Verifiable and Auditable Federated Learning via Blockchain Systems 

VQL: Efficient and Verifiable Cloud Query Services for Blockchain Systems 

Assoc. Prof. Dr. Yun-Cheng Tsai | Data Analytics | Best Researcher Award

Assoc. Prof. Dr. Yun-Cheng Tsai | Data Analytics | Best Researcher Award

Associate Professor, National Taiwan Normal University, Taiwan

Dr. Yun-Cheng Tsai is a distinguished researcher and educator specializing in blockchain technology, financial vision, artificial intelligence, and educational analytics. He is currently a faculty member at the National Taiwan Normal University, Department of Technology Application and Human Resource Development. With a strong background in computer science and information engineering, Dr. Tsai has contributed significantly to various domains, including educational metaverse environments, reinforcement learning in finance, and data privacy protection. His interdisciplinary research integrates technology and human resource development, making a substantial impact on academia and industry. 🌏💡

Publication Profile

🎓 Education

Dr. Tsai earned his Ph.D. in Computer Science and Information Engineering from National Taiwan Normal University (2009-2016) 🎓. His academic journey also includes prestigious research stays at the Max Planck Institute for the History of Science and Humboldt-Universität zu Berlin, where he collaborated on pioneering technological advancements in data science and blockchain applications. 🌍📖

💼 Experience

With a rich academic career spanning multiple institutions, Dr. Tsai has held faculty positions at several esteemed universities in Taiwan. Before joining National Taiwan Normal University in 2022, he was affiliated with Soochow University (2019-2022), National Taiwan University (2017-2019), and National Taipei University of Business (2016-2017). His expertise in blockchain and AI applications has also led to extensive research collaborations globally. 🏫🔬

🏆 Awards and Honors

Dr. Tsai’s contributions to blockchain technology, financial data security, and educational analytics have earned him recognition in the research community. His invited research positions at the Max Planck Institute and Humboldt-Universität zu Berlin highlight his international reputation. 🏅📜

🔬 Research Focus

Dr. Tsai’s research spans blockchain applications in financial systems, reinforcement learning for trading strategies, and AI-driven educational environments. He has developed innovative solutions for transparency in carbon credit markets, interactive learning tools for blockchain education, and privacy-preserving financial vision models. His work is widely cited and influences both academic and industry advancements. 🚀📊

🔍 Conclusion

Dr. Yun-Cheng Tsai is a leading academic in blockchain technology, AI, and educational analytics, making significant contributions to transparency in financial markets, metaverse learning, and AI-powered trading strategies. His global collaborations and impactful research continue to shape the future of technology and education. 🌟📡

🔗 Publications

Enhancing Transparency and Fraud Detection in Carbon Credit Markets Through Blockchain-Based Visualization Techniques – Electronics (2025) 🔗 DOI: 10.3390/electronics14010157

Empowering Young Learners to Explore Blockchain with User‐Friendly Tools: A Method Using Google Blockly and NFTs – IET Blockchain (2024) 🔗 DOI: 10.1049/blc2.12055

Empowering Students Through Active Learning in Educational Big Data Analytics – Smart Learning Environments (2024) 🔗 DOI: 10.1186/s40561-024-00300-1

Learner-Centered Analysis in Educational Metaverse Environments: Exploring Value Exchange Systems Through Natural Interaction and Text Mining – Journal of Metaverse (2023) 🔗 DOI: 10.57019/jmv.1302136

Financial Vision-Based Reinforcement Learning Trading Strategy – Analytics (2022) 🔗 DOI: 10.3390/analytics1010004

The Protection of Data Sharing for Privacy in Financial Vision – Applied Sciences (2022) 🔗 DOI: 10.3390/app12157408

Dynamic Deep Convolutional Candlestick Learner – arXiv (2022) 🔗 Scopus ID: 85123711664

A Pricing Model with Dynamic Credit Rating Transition Matrices – Journal of Risk Model Validation (2021) 🔗 DOI: 10.21314/JRMV.2021.007

Shinoy Vengaramkode Bhaskaran | Big Data Analytics | Best Researcher Award

Mr. Shinoy Vengaramkode Bhaskaran | Big Data Analytics | Best Researcher Award

Senior Big Data Engineering Manager, Zoom Communications Inc, United States

Shinoy Bhaskaran is a seasoned leader with a strong background in data engineering, platform development, and team leadership. With extensive experience in building large-scale data platforms and driving data strategy, Shinoy specializes in real-time and batch processing using cutting-edge technologies like PySpark, Snowflake, and AWS. He has demonstrated expertise in managing diverse teams globally, fostering high-performance environments, and delivering impactful data-driven solutions across industries. As a Senior Engineering Manager at Zoom Video Communications, he oversees a team of 20+ engineers and has successfully managed data pipelines that process billions of transactions daily. His leadership approach emphasizes mentorship, team growth, and creating inclusive, innovative work cultures. 🌟👨‍💻

Publication Profile

ORCID

Education:

Shinoy Bhaskaran holds a degree in Engineering, but specific details about his educational qualifications are not provided in the available information. His career journey reflects continuous learning and applying new technologies, with an emphasis on real-world problem solving in the data engineering field. 🎓

Experience:

Shinoy’s career spans over a decade, with significant experience in managing data engineering teams and developing robust data platforms. He has worked at prominent organizations such as Zoom Video Communications, GoTo Inc., LogMeIn, Citrix Systems, and Wipro Technologies. In his current role, he manages high-volume data pipelines, focusing on data quality, storage, cost, security, and compliance. He also excels in driving cross-functional collaborations and mentoring teams to achieve high levels of success in data engineering, governance, and analytics. 💼

Awards and Honors:

Shinoy Bhaskaran has been recognized for his excellence in leadership, innovation, and data-driven impact. His work in building and managing large-scale data platforms has earned him respect in the tech community, though specific award details are not provided in the available information. 🎖️

Research Focus:

Shinoy’s research and technical expertise are centered around big data platforms, real-time analytics, cloud computing, data engineering, and data governance. He is particularly interested in developing scalable data solutions for enterprises, ensuring compliance with regulations like GDPR and SOX, and enhancing the decision-making process through data-driven insights. His research spans various domains, including AI-enhanced predictive maintenance, big data analytics for secure banking, and cost optimization strategies for businesses using generative AI. 🔍📊

Conclusion:

Shinoy Bhaskaran’s career is marked by his passion for leadership, technical expertise in data platforms, and commitment to creating high-performing teams. His ability to navigate complex data challenges and deliver impactful solutions has made him a recognized leader in the field of data engineering. 🌟

Publications:

  1. Gen-Optimizer: A Generative AI Framework for Strategic Business Cost Optimization
    Published Year: 2025
    Journal: Computers
    DOI: 10.3390/computers14020059
    Cited by: 0

  2. BankNet: Real-Time Big Data Analytics for Secure Internet Banking
    Published Year: 2025
    Journal: Big Data and Cognitive Computing
    DOI: 10.3390/bdcc9020024
    Cited by: 0

  3. Edge-Cloud Synergy for AI-Enhanced Sensor Network Data: A Real-Time Predictive Maintenance Framework
    Published Year: 2024
    Journal: Sensors
    DOI: 10.3390/s24247918
    Cited by: 0

Chunling Bao | Data Science | Best Researcher Award

Ms. Chunling Bao | Data Science | Best Researcher Award

PhD Candidates, Shanghai Normal University, China

Chunling Bao is a dedicated Ph.D. candidate at Shanghai Normal University, specializing in environmental and geographical sciences 🌍. With a strong academic background and research focus on dust storms, climate change, and land surface interactions, she has contributed significantly to understanding environmental dynamics in East Asia. Her scholarly work is widely recognized, with multiple publications in high-impact journals 📚.

Publication Profile

ORCID

🎓 Education

Chunling Bao embarked on her academic journey at Inner Mongolia Normal University, earning her undergraduate degree (2014-2018) and later obtaining her master’s degree (2018-2021) 🎓. She expanded her expertise through an exchange program at the Center for Agricultural Resources Research, Chinese Academy of Sciences (2023), before pursuing her doctoral studies at Shanghai Normal University (2023-present) 🏫.

💼 Experience

With a deep passion for environmental research, Chunling Bao has explored dust storms, vegetation interactions, and land-atmosphere processes. Her experience includes field studies, satellite data analysis, and interdisciplinary research collaborations 🌪️. Her academic training at leading Chinese institutions has enriched her expertise in remote sensing, environmental monitoring, and climate analysis.

🏆 Awards and Honors

Chunling Bao has been recognized for her outstanding research contributions in environmental science 🏅. Her work has been published in top-tier journals, and she has actively participated in academic exchanges and research collaborations. Her efforts in studying dust storm dynamics have positioned her as an emerging scholar in the field 🌿.

🔬 Research Focus

Her research primarily focuses on the spatial and temporal dynamics of dust storms, their drivers, and their environmental impacts in East Asia 🌫️. Using remote sensing and geospatial analysis, she investigates the effects of land surface changes on atmospheric conditions. Her studies contribute to climate adaptation strategies and sustainable environmental management.

📌 Conclusion

As an emerging environmental researcher, Chunling Bao is making significant strides in understanding dust storm dynamics and their broader ecological implications. With her growing academic contributions and research excellence, she continues to shape the field of environmental science and atmospheric studies 🌏.

📚 Publications

Dust Intensity Across Vegetation Types in Mongolia: Drivers and Trends. Remote Sensing, 17(3), 410. 🔗 DOI

Analyses of the Dust Storm Sources, Affected Areas, and Moving Paths in Mongolia and China in Early Spring. Remote Sensing, 14, 3661. 🔗 DOI

Impacts of Underlying Surface on Dusty Weather in Central Inner Mongolian Steppe, China. Earth and Space Science, 8, e2021EA001672. 🔗 DOI

Regional Spatial and Temporal Variation Characteristics of Dust in East Asia. Geographical Research, 40(11), 3002-3015. 🔗 DOI (in Chinese)

Analysis of the Movement Path of Dust Storms Affecting Alxa. Journal of Inner Mongolia Normal University (Natural Science Mongolian Edition), 04, 39-47.

Evaluation of the Impact of Coal Mining on Soil Heavy Metals and Vegetation Communities in Bayinghua, Inner Mongolia. Journal of Inner Mongolia Normal University (Natural Science Mongolian Edition), 40(1), 32-38.

 

 

Yunhyung LEE | Computer science| Best Researcher Award

Prof. Dr. Yunhyung LEE | Computer Science | Best Researcher Award

Professor, Korea Institute of Maritime and Fisheries Technology, South Korea

Dr. Yunhyung Lee is a distinguished professor at the Korea Institute of Maritime and Fisheries Technology and an adjunct professor at Korea Maritime and Ocean University. With an academic journey spanning nearly two decades, Dr. Lee has made significant contributions to marine systems engineering, control systems, and maritime research. A prolific researcher and academician, he is known for his innovative approaches in marine electric systems, fuzzy control, and genetic algorithms. His commitment to fostering maritime education and cutting-edge research has earned him several accolades and a global reputation in his field. 🌐✨

Publication Profile

ORCID

Education 🎓

Dr. Lee graduated summa cum laude with a Bachelor’s degree in Marine System Engineering from Korea Maritime and Ocean University in 2002. He further earned his Master’s degree in 2004 and completed his Ph.D. in Mechatronics Engineering in 2007. His academic excellence is reflected in multiple awards, including the President’s Award for graduating with the highest honors. 🏆📚

Professional Experience 💼

Dr. Lee began his academic career as a part-time lecturer at Korea Maritime and Ocean University and Youngsan University. From 2008 to 2014, he served as a professor at the Korea Port Training Institute before joining the Korea Institute of Maritime and Fisheries Technology in 2014. Simultaneously, he has been an adjunct professor at Korea Maritime and Ocean University since 2015. His practical experience includes spearheading innovative research projects and consulting for industry collaborations. ⚙️🛳️

Awards and Honors 🏅

Dr. Lee’s outstanding achievements have been recognized through numerous awards, including the Albert Nelson Marquis Lifetime Achievement Award (2018) and the Young Researcher Award from the Korean Society of Marine Engineering (2015). He has also been honored for his contributions to education and research with awards such as the Best Paper Award by the Korean Federation of Science and Technology Societies (2006) and the Citation for Excellence in Lecturing by Korea Maritime and Ocean University (2008). 🌟🎖️

Research Focus 🔬

Dr. Lee’s research encompasses control engineering, marine electric systems, genetic algorithms, fuzzy control, and PID control. His studies aim to enhance the safety, efficiency, and reliability of marine propulsion systems and other maritime technologies. Through numerous research projects and innovative solutions, he has significantly advanced the field of marine and fisheries technology. 🌊⚡

Conclusion 🌟

Dr. Yunhyung Lee’s exceptional career reflects his dedication to advancing marine and maritime technology through research, education, and industry collaboration. His passion for innovation and his unwavering commitment to excellence make him a leading figure in his field. 🌏✨

Publications 📚

Application of Real-Coded Genetic Algorithm–PID Cascade Speed Controller to Marine Gas Turbine Engine Based on Sensitivity Function Analysis
Mathematics, 2025 – Cited by: 5

Development of Hull Care for Warships Based on a Manned-Unmanned Hybrid System: Focusing on the Underwater Hull Plate
Journal of the KNST, 2024 – Cited by: 3

Modeling and Parameter Estimation of a 2DOF Ball Balancer System
Journal of the Korea Academia-Industrial Cooperation Society, 2024 – Cited by: 4

Ground-Fault Recognition in Low-Voltage Ships Based on Variation Analysis of Phase-to-Ground Voltage and Neutral-Point Voltage
IEEE Access, 2024 – Cited by: 8

Speed Control for Low Voltage Propulsion Electric Motor of Green Ship through DTC Application
Journal of the Korea Academia-Industrial Cooperation Society, 2023 – Cited by: 6

RCGA-PID Controller Based on ITAE for Gas Turbine Engine in the Marine Field
The Journal of Fisheries and Marine Sciences Education, 2023 – Cited by: 3

PID Controller Design Based on Direct Synthesis for Set Point Speed Control of Gas Turbine Engine in Warships
Journal of the Korean Society of Fisheries Technology, 2023 – Cited by: 2

Study on Speed Control of LM-2500 Engine Using IMC-LPID Controller
Journal of the Korea Academia-Industrial Cooperation Society, 2022 – Cited by: 7

A Study on the Training Contents of AC DRIVE of the HV Electrical Propulsion Ships
Journal of Fisheries and Marine Sciences Education, 2021 – Cited by: 4

Zari Farhadi | Analytics | Best Researcher Award

Dr. Zari Farhadi | Analytics | Best Researcher Award

Lecturer, University of Tabriz, Iran

Dr. Zari Farhadi is a dedicated lecturer and researcher at the University of Tabriz, Iran, with expertise in Data Science, Machine Learning, and Predictive Modeling. Her passion for academic excellence is evident in her work, particularly in the development of hybrid models to enhance data analysis accuracy. With a Ph.D. in Data Science, she has contributed extensively to advancing predictive models through innovative techniques like ensemble learning and deep regression. 🌟📚

Publication Profile

Google Scholar

Education

Zari Farhadi holds a Ph.D. in Data Science, specializing in machine learning, deep learning, and statistical techniques, from the University of Tabriz. Her academic foundation supports her pioneering work in hybrid machine learning models. 🎓

Experience

As a lecturer and researcher, Dr. Farhadi has contributed to various research papers, focusing on machine learning and deep learning. She teaches at both the Computerized Intelligence Systems Laboratory and the Department of Statistics at the University of Tabriz. Her research experience spans across several high-impact areas of data science, including predictive modeling and statistical learning. 🧑‍🏫

Awards and Honors

Though not currently affiliated with professional organizations, Dr. Farhadi’s work has been recognized in academic circles through the citation of her research in top journals, underlining her growing impact in the field of data science. 🏅

Research Focus

Dr. Farhadi’s research centers on Machine Learning, Predictive Modeling, Ensemble Learning Methods, Statistical Learning, and Hybrid Models like ADeFS, which integrate deep learning with statistical shrinkage methods. She strives to improve model performance in real-world applications, including gold price prediction and real estate valuation. 🤖📊

Conclusion

Zari Farhadi continues to innovate and drive research in the fields of machine learning and data science. Through her groundbreaking work in hybrid models, she is shaping the future of predictive analytics and advancing the boundaries of artificial intelligence in academic and industrial applications. 🌍

Publications

An Ensemble Framework to Improve the Accuracy of Prediction Using Clustered Random-Forest and Shrinkage Methods,
Appl. Sci., vol. 12, no. 20, 2022, doi: 10.3390/app122010608
Cited by: 15 articles.

Improving random forest algorithm by selecting appropriate penalized method
Commun. Stat. Simul. Comput., vol. 0, no. 0, pp. 1–16, 2022, doi: 10.1080/03610918.2022.2150779
Cited by: 10 articles.

ERDeR: The combination of statistical shrinkage methods and ensemble approaches to improve the performance of deep regression,
IEEE Access, DOI: 10.1109/ACCESS.2024.3368067
Cited by: 3 articles.

ADeFS: A deep forest regression-based model to enhance the performance based on LASSO and Elastic Net,
Mathematics and Computer Science, MDPI, 13 (1), 118, 2024.
Cited by: Pending.

Combining Regularization and Dropout Techniques for Deep Convolutional Neural Network,
IEEE Glob. Energy Conf. GEC 2022, pp. 335–339, 2022, doi: 10.1109/GEC55014.2022.9986657
Cited by: 5 articles.

Analysis of Penalized Regression Methods in a Simple Linear Model on the High-Dimensional Data,
American Journal of Theoretical and Applied Statistics, 8 (5), 185, 2019.
Cited by: 2 articles.

An Ensemble-Based Model for Sentiment Analysis of Persian Comments on Instagram Using Deep Learning Algorithms,
IEEE Access, DOI: 10.1109/ACCESS.2024.3473617
Cited by: Pending.

Hybrid Model for Visual Sentiment Classification Using Content-Based Image Retrieval and Multi-Input Convolutional Neural Network,
International Journal of Intelligent Systems (Under review).

 

Md. Emran Biswas | Data science | Best Researcher Award

Mr. Md. Emran Biswas | Data science | Best Researcher Award

Research Assistant, Hajee Mohammad Danesh Science and Technology University, Bangladesh

🌟 Md. Emran Biswas, hailing from Dinajpur, Bangladesh, is a passionate researcher and technologist specializing in machine learning, optimization algorithms, and their societal applications. He has actively contributed to predictive analysis, bioinformatics-based drug discovery, and developing AI solutions for global good. As a skilled programmer and researcher, Emran’s work has earned recognition through multiple publications, accolades, and groundbreaking projects in his field.

Publication Profile

Scopus

Education

🎓 Md. Emran Biswas completed his B.Sc. in Electronics and Communication Engineering at Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh, from March 2019 to November 2024, with an impressive CGPA of 3.412/4.00. His academic journey is marked by a focus on deep learning, predictive modeling, and optimization algorithms.

Experience

💼 Emran served as a Research Assistant at Petarhub and DIOT Lab, HSTU, contributing to machine learning, predictive modeling, and optimization projects. His notable achievements include developing the ApexBoost Regression model, managing large datasets, and publishing impactful research in reputed journals like IEEE and Electronics.

Research Interests

🔍 Emran’s research focuses on machine learning, optimization algorithms, and their transformative applications in areas like bioinformatics-based drug discovery, predictive analysis, and societal challenges. His work aligns with the vision of ‘AI for Good,’ driving impactful innovation.

Awards

🏆 Emran has earned recognition for his innovative projects, including First Runner-Up at the Project Exhibition 2022 for his “Face Detection-Based Attendance System” and Second Runner-Up in 2023 for his “AI-Based Health Checking System.” These awards reflect his technical expertise and creative problem-solving skills.

Publications

Machine Learning Approach to Estimate Requirements for Target Productivity of Garments Employees. IEEE ICEEICT 2024 (Cited by: 5)

An Effective Data-Driven Approach to Predict Bike Rental Demand. Google Scholar (Cited by: 12)

Spatio-Temporal Feature Engineering and Selection-Based Flight Arrival Delay Prediction Using Deep Feedforward Regression Network. Electronics, 13(24), p.4910 (Cited by: 9)

 

Assoc. Prof. Dr.Pabrício Lopes | Data Science | Best Researcher Award

Assoc. Prof. Dr. Pabrício Lopes | Data Science | Best Researcher Award

Professor, UFRPE, Brazil

🌟 Pabrício Marcos Oliveira Lopes is a dedicated scholar specializing in Remote Sensing, Agrometeorology, and Physical Geography. He is a Professor of Agronomy at the Federal Rural University of Pernambuco (UFRPE) in Recife, Brazil, contributing significantly to the fields of geospatial analysis and climate studies. With over 62 impactful publications, Dr. Lopes is a leader in exploring environmental phenomena, emphasizing sustainability and climate adaptation. 📚🌍

Publication Profile

ORCID

Education

🎓 Dr. Lopes earned his Ph.D. in Remote Sensing from the National Institute for Space Research (INPE) in 2006. He holds an M.Sc. in Agrometeorology from the Federal University of Campina Grande (UFCG, 1999) and dual undergraduate degrees in Meteorology (UFCG, 1997) and Physics (UEPB, 1999). His educational journey showcases a robust interdisciplinary expertise in physical and environmental sciences. 📊🌤️

Experience

🏫 Dr. Lopes serves as a Professor of Agronomy at UFRPE, where he integrates research and teaching to address agricultural and environmental challenges in Brazil’s semi-arid regions. His expertise includes geospatial technologies, climate modeling, and phenological monitoring, making him a valuable contributor to academia and applied science. 🌾🛰️

Research Interests

📖 Dr. Lopes’ research focuses on phenological monitoring, aridity conditions, climate extremes, and desertification, with a particular emphasis on the Brazilian semi-arid region. His work leverages satellite data, GIS modeling, and time-series analysis to develop innovative solutions for environmental monitoring and sustainable agriculture. 🌱📡

Awards

🏆 Dr. Lopes has received recognition for his academic contributions, though specific awards were not listed. His significant impact in climate studies and geospatial research is widely acknowledged in the scientific community. 🌟🎖️

Publications

Phenological Monitoring of Irrigated Sugarcane Using Google Earth Engine, Time Series, and TIMESAT in the Brazilian Semi-Arid
AgriEngineering, 2024-10-18 | DOI: 10.3390/agriengineering6040217
Cited by: Information not available.

Influência de eventos climáticos extremos na ocorrência de queimadas e no poder de regeneração vegetal
Revista Brasileira de Geografia Física, 2024-03-14 | DOI: 10.26848/rbgf.v17.2.p1098-1113
Cited by: Information not available.

Geospatial Insights into Aridity Conditions: MODIS Products and GIS Modeling in Northeast Brazil
Hydrology, 2024-02-26 | DOI: 10.3390/hydrology11030032
Cited by: Information not available.

Assessment of Desertification in the Brazilian Semiarid Region Using Time Series of Climatic and Biophysical Variables
Revista Brasileira de Geografia Física, 2023-12-29 | DOI: 10.26848/rbgf.v16.6.p3424-3444
Cited by: Information not available.

Carolina Magalhães | Machine Learning | Best Researcher Award

Dr. Carolina Magalhães | Machine Learning | Best Researcher Award

Investigadora, INEGI – Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial, Portugal

👩‍🔬 Carolina Magalhães is a dedicated biomedical engineer and PhD candidate with expertise in applying AI and imaging technologies to healthcare challenges. Based in Porto, Portugal, she combines her passion for modern technology with a problem-solving mindset to develop innovative solutions in skin cancer diagnostics. Carolina has worked collaboratively with clinical experts to bridge research and practical applications, contributing significantly to advancing imaging-based decision support systems.

Publication Profile

ORCID

Education

🎓 Carolina holds a PhD in Biomedical Engineering from the Faculdade de Engenharia da Universidade do Porto (2020–2024). She also completed her MSc in Biomedical Engineering at the same institution (2016–2018) and earned her Bachelor’s in Bioengineering – Biomedical Engineering from Universidade Católica Portuguesa (2013–2016).

Experience

💼 Carolina has a rich research background, currently serving as a Graduate Research Fellow at INEGI, focusing on skin lesion diagnosis using multispectral imaging. Her work spans from leveraging machine learning models for skin cancer classification to thermal and UV imaging techniques. Previously, she contributed to projects on hyperhidrosis diagnosis, prosthetic device design, and thermal image analysis for musculoskeletal disorders, collaborating with leading hospitals and research centers in Portugal.

Research Interests

🔬 Carolina is passionate about exploring artificial intelligence, machine learning, and advanced imaging technologies for healthcare applications. Her interests include developing multispectral imaging systems, improving diagnostic tools for skin cancer, and advancing infrared thermography for clinical support systems.

Awards

🏆 Carolina’s innovative work has been recognized with prestigious research grants from the Foundation for Science and Technology (SFRH/BD/144906/2019) and other funding organizations. These awards have supported her impactful contributions to biomedical engineering and healthcare innovation.

Publications

“Systematic Review of Deep Learning Techniques in Skin Cancer Detection”
BioMedInformatics, 11/2024
Read here

“Skin Cancer Image Classification with Artificial Intelligence Strategies: A Systematic Review”
Journal of Imaging, 10/2024
Read here

“Use of Infrared Thermography for Abdominoplasty Procedures in Patients with Extensive Subcostal Scars: A Preliminary Analysis”
Plast Reconstr Surg Glob Open, 06/2023
Read here

“Classic Versus Scarpa-Sparing Abdominoplasty: An Infrared Thermographic Comparative Analysis”
J Plast Reconstr Aesthet Surg, 06/2023
Read here

“Towards an Effective Imaging-Based Decision Support System for Skin Cancer”
Handbook of Research on Applied Intelligence for Health and Clinical Informatics, 10/2022
Read here