Mr. Andi Chen | Deep Learning | Excellence in Research Award
Nanjing University | China
20
15
10
5
0
9
6
2
Documents
h-index
Nanjing University | China
20
15
10
5
0
University of Electronic Science and Technology of China | China
Muhammad Irfan Khan is a dedicated ML Security Engineer, researcher, and academic professional specializing in artificial intelligence, cybersecurity, and image processing, currently pursuing his M.S. in Information and Communication Engineering at the University of Electronic Science and Technology of China (UESTC), Chengdu. He has worked as a Machine Learning & Security Engineer at Victoriam.ai Solution, USA, where he developed threat detection models and optimized real-time security frameworks, and as a Research Intern at LinkDoc Technology, contributing to medical image segmentation advancements. At Namal University, Pakistan, he gained substantial experience as a Research Assistant, Teaching Assistant, and Lab Engineer, supporting AI/ML research, supervising projects, and co-authoring multiple peer-reviewed publications. His research contributions include journal articles such as “Genetic Algorithm Based Hybrid Deep Learning Framework for Stability Prediction of ABO3 Perovskites in Solar Cell Applications” (Energies, 2025), “Forecasting Fluctuations in Cryptocurrency Trading Volume Using a Hybrid LSTM-DQN Reinforcement Learning” (Digital Finance Journal, 2025), “Machine Learning-Powered Malware Detection in Encrypted IoT Traffic” (IEEE Journal of IoT, 2024), and “Decoding Emotions: U-Net-Driven Pattern Recognition for fMRI Analysis” (IEEE Transactions on Medical Imaging, 2025), along with conference proceedings in ICICT and IBCAST. He has served as a reviewer for international journals and conferences, including Computational Economics (Springer), Scientific Reports (Nature), and AAAI-26. His technical strengths span deep learning, reinforcement learning, cybersecurity, computer vision, and data-driven optimization, while also excelling in leadership and collaborative research. Despite his growing recognition, his current Scopus/Google Scholar profile records 2 documents reflecting his early yet impactful stage in research.
Wali, S., Khan, M. I., & Zulfiqar, N. (2025). Forecasting fluctuations in cryptocurrency trading volume using a hybrid LSTM–DQN reinforcement learning. Digital Finance Journal.
Dr. Hisham AbouGrad , Senior Lecturer , University of East London – UEL , United Kingdom.
Dr. Hisham AbouGrad is a dynamic academic and industry expert in computer science and digital technologies. Currently a Senior Lecturer at the University of East London, he brings over two decades of experience in higher education and IT. Known for bridging theory with practice, he has supervised innovative projects in AI, FinTech, and mobile app development. Dr. AbouGrad also leads international academic collaborations and contributes to top-tier journals. He is a Fellow of the Higher Education Academy and an active member of the British Computer Society, with a passion for enhancing digital learning, scientific problem-solving, and sustainable technology.
Dr. Hisham AbouGrad earned his Doctorate in Professional Studies (DProf) from London South Bank University, focusing on Workflow Information Systems Performance using BPM methodologies. He also holds a Master of Science (MSc) in Software Engineering from the University of Bradford and a Master of Business Administration (MBA) in Management from the University of Lincoln. Additionally, he completed a Postgraduate Certificate in Higher Education Practice (PGCHEP) from the University of Plymouth. His academic credentials are enhanced by certifications in project management and IT, including CITP from BCS and PMP qualifications, reinforcing his foundation in both pedagogy and technical leadership.
Dr. AbouGrad’s career spans prestigious academic institutions and industry roles. Since 2021, he has served as a Senior Lecturer at the University of East London, where he also fosters international collaborations. Previously, he held teaching and leadership roles at ICON College, QA Higher Education, GSM London, and the University of Plymouth. From 2011 to 2019, he was a doctoral researcher at London South Bank University. With vast teaching experience in computing, business management, and information systems, Dr. AbouGrad has mentored numerous PhD and DProf students while shaping curricula aligned with technological advancements and practical industry applications.
Dr. Hisham AbouGrad has been recognized for his commitment to academic excellence and professional contribution. He is a Fellow of the UK Higher Education Academy (FHEA), a Certified IT Professional (CITP) with the British Computer Society (BCS), and has received qualifications in IT Quality Management (ITQM). He is a founding member of UEL’s FinTech Centre and contributes actively to academic committees and journal editorial boards. As a reviewer for reputed journals like IEEE TCE, SAGE, Elsevier, and Emerald, he consistently upholds research quality, earning professional credibility and trust in the global academic and scientific communities.
Dr. AbouGrad’s research integrates Artificial Intelligence, FinTech, Machine Learning, Information Security, and Multi-Criteria Decision Making (MCDM) with Business Process Management (BPM) and Workflow Systems. His work aims to create scalable, secure, and intelligent digital solutions. Projects under his supervision include AI-based financial prediction systems, eCommerce fraud detection using neural networks, and mobile payment technologies. His recent studies explore AI-driven stock prediction, sentiment analysis, and fake review detection—highlighting his goal to solve real-world problems through data science, machine learning, and performance analysis. He also researches Decision Support Systems (DSS), ECM, GIS, and user-centered eCommerce design.
Dr. Hisham AbouGrad is a passionate educator, strategic researcher, and technology advocate whose career is marked by innovation, collaboration, and impact. His multifaceted expertise across academia and industry supports students, institutions, and global communities in adapting to digital transformation. Through research, mentorship, and leadership, he contributes to solving complex challenges in AI, FinTech, and Information Systems. With a forward-thinking mindset, he continues to influence academic practices, elevate IT performance, and foster global academic relationships. His legacy reflects both the rigor of scholarly inquiry and the relevance of applied science in the 21st century.
AI-Framework to Detect eCommerce Fake Reviews: A Hybrid Neural Network Machine Learning Model
Published: 2024, Book: Artificial Intelligence and Computational Technologies
Cited by: 1
Financial Decision-Making AI-Framework to Predict Stock Price Using LSTM Algorithm and NLP-Driven Sentiment Analysis Model
Published: 2025, Conference: Annual International Congress on Computer Science
Cited by: 1
Decision Making by Applying Machine Learning Techniques to Mitigate Spam SMS Attacks
Published: 2023, Conference: International Conference on Deep Learning, Artificial Intelligence and Robotics
Cited by: 5
Developing the Business Process Management Performance of an Information System Using the Delphi Study Technique
Published: 2019, Conference: EAI International Conference on Technology, Innovation, Entrepreneurship and Education
Cited by: 5
Applying the Delphi Method to Measure Enterprise Content Management Workflow System Performance
Published: 2022, Journal: Lecture Notes in Networks and Systems (Springer)
Cited by: 1
The Impact of Business Process Management Values on Enterprise Content Management Workflow Systems Performance
Published: 2020, Thesis: London South Bank University
Cited by: 1
Intelligent Computing, Proceedings of the 2022 Computing Conference
Published: 2022, Publisher: Springer International Publishing
Cited by: 23
Key Digital Trends in Artificial Intelligence and Robotics: Proceedings of ICDLAIR 2022
Published: 2023, Publisher: Springer International Publishing
Cited by: 1
Master, Xizang Minzu University, China.
Erping Zhao, originally from Binxian County in Shaanxi Province, is a highly respected professor at Xizang Minzu University, where he also mentors master’s students. With a career rooted in academia and research, Dr. Zhao has emerged as a distinguished figure in the field of computer science. After earning his master’s degree in software engineering from Xidian University in 2006, he embarked on a teaching journey that has spanned nearly two decades. His academic pursuits have taken him to China Renmin University as a visiting scholar in Big Data and Knowledge Graphs. Currently, he holds several influential positions, including outstanding member of the China Computer Association, executive member of the Information System Committee, and expert evaluator in the national graduate education monitoring database.
Dr. Zhao completed his B.S. in Computer Application from Xidian University in 1999. He later returned to the same university and earned his M.S. in Software Engineering in April 2006. His passion for continuous learning led him to further expand his research capabilities as a visiting scholar in 2016 at China Renmin University, focusing on Big Data and Knowledge Graphs.
Beginning his career in the industry, Erping Zhao worked at Dang Tang Telecom Co., Ltd. from 1999 to 2003. Transitioning into academia, he joined the College of Information Engineering at Xizang Minzu University in June 2006. Over the years, he has risen through the ranks to become a professor, having led multiple research projects funded by both provincial and national bodies. His leadership has been instrumental in the successful completion of Natural Science Foundation projects and key technology initiatives for Tibet.
Throughout his distinguished career, Dr. Zhao has received numerous accolades. These include the Third Prize in the Tibet Sub-Competition of the 2024 “Data Elements ×” Competition, the Xizang Autonomous Region Teaching Achievement Award, and the Xianyang Excellent Academic Paper Award. These honors reflect his commitment to both academic excellence and innovation in applied research.
Dr. Zhao’s research interests lie in the rapidly advancing domains of Natural Language Processing, Knowledge Graphs, Deep Learning, Intelligent Q&A and Recommendation Systems, and Large Language Models. He has made significant contributions in integrating big data analysis with knowledge representation, and his publications reflect a blend of theory and real-world applications.
In summary, Professor Erping Zhao stands out as a dedicated academician and accomplished researcher with profound contributions to artificial intelligence and computer science. His blend of academic insight, industrial experience, and scholarly recognition positions him as a thought leader in his field.
A multi-head attention-based bidirectional gated recurrent unit and multilayer perceptron for relation extraction model
2025 — Engineering Applications of Artificial Intelligence
Cited by: 7 articles
Aspect-Level Sentiment Analysis Based on Vector Projection and Adversarial Contrastive Learning
2025 — Expert Systems with Applications
Cited by: 4 articles
A knowledge graph completion model based on weighted fusion description information and transform of the dimension and the scale
2025 — Applied Intelligence
Cited by: 3 articles
Multi-Level Attention Based Coreference Resolution With Gated Recurrent Unit and Convolutional Neural Networks
2023 — IEEE Access
Cited by: 11 articles
A Knowledge Graph Completion Method Based on Fusing Association Information
2022 — IEEE Access
Cited by: 18 articles
Professor, Frankfurt University of Applied Sciences, Germany
Professor Dr. Jörg Schäfer is a renowned academic and researcher in the field of Computer Science, currently serving at the Frankfurt University of Applied Sciences in Germany. With a distinguished background in mathematics and a dynamic career bridging academia and industry, Dr. Schäfer is celebrated for his expertise in object-oriented programming, distributed systems, databases, and machine learning. His innovative research in artificial intelligence and human activity recognition, paired with decades of experience in technology strategy and complex system architecture, have made him a leading figure in both academic and professional circles.
Dr. Schäfer completed his Ph.D. in Mathematics with summa cum laude at Ruhr-Universität Bochum (1991–1993) under the supervision of Prof. Dr. Sergio Albeverio. His doctoral work was part of the elite DFG graduate program “Geometrie und Mathematische Physik” and included an academic travel scholarship to Japan. Before his Ph.D., he earned a diploma in Mathematical Physics with distinction from Ruhr-Universität Bochum (1987–1991), laying the groundwork for his future interdisciplinary research.
Dr. Schäfer’s professional career blends deep academic involvement with high-impact industry roles. Since 2009, he has been a professor at Frankfurt University of Applied Sciences, teaching subjects such as object-oriented programming, distributed systems, and machine learning. He is the founding member of the Industrial Data Science (INDAS) research group and serves as Chairman of the B.Sc. Computer Science program. Prior to his academic tenure, Dr. Schäfer held senior positions at Accenture (2005–2009) and Cambridge Technology Partners (2000–2005), where he was responsible for large-scale architecture design, pre-sales, delivery, and enterprise integration strategies. His early career includes project management roles at Westdeutsche Landesbank and a trainee program at Salomon Brothers, as well as scientific assistant roles focused on stochastic analysis.
Professor Schäfer has received several prestigious accolades throughout his career. Most notably, he was awarded the Hessischer Hochschulpreis in 2022 for excellence in teaching. During his academic formation, he was also a scholar of the Studienstiftung des deutschen Volkes (1987–1991), reflecting his outstanding academic promise from an early stage.
Dr. Schäfer’s research is focused on artificial intelligence, machine learning, mobile and distributed systems, and human activity recognition. His work leverages WiFi channel state information (CSI) for device-free activity detection, contributing significantly to the field of pervasive computing. He also has a foundational background in mathematical physics, particularly in Chern–Simons theory and stochastic analysis, which informs his unique approach to computer science problems.
With a remarkable blend of academic rigor and real-world application, Professor Dr. Jörg Schäfer stands out as a multifaceted scholar and technology leader. His research continues to shape the future of data science and AI-driven systems, while his dedication to teaching and mentorship inspires the next generation of computer scientists.
Computer-implemented method for ensuring the privacy of a user, computer program product, device
J Schäfer, D Toma
US Patent 8,406,988, 2013
Cited by: 237 articles
Device free human activity and fall recognition using WiFi channel state information (CSI)
N Damodaran, E Haruni, M Kokhkharova, J Schäfer
CCF Transactions on Pervasive Computing and Interaction, 2020
Cited by: 109 articles
Human activity recognition using CSI information with nexmon
J Schäfer, BR Barrsiwal, M Kokhkharova, H Adil, J Liebehenschel
Applied Sciences, 2021
Cited by: 75 articles
Abelian Chern–Simons theory and linking numbers via oscillatory integrals
S Albeverio, J Schäfer
Journal of Mathematical Physics, 1995
Cited by: 53 articles
A rigorous construction of Abelian Chern-Simons path integrals using white noise analysis
P Leukert, J Schäfer
Reviews in Mathematical Physics, 1996
Cited by: 43 articles
Fall detection from electrocardiogram (ECG) signals and classification by deep transfer learning
FS Butt, L La Blunda, MF Wagner, J Schäfer, I Medina-Bulo, et al.
Information, 2021
Cited by: 40 articles
Device free human activity recognition using WiFi channel state information
N Damodaran, J Schäfer
2019 IEEE SmartWorld Conference
Cited by: 37 articles
Cloud computing – Evolution in der Technik, Revolution im Business
G Münzl, B Przywara, M Reti, J Schäfer, et al.
Berlin: BITKOM, 2009
Cited by: 37 articles
Assistant Professor, JIS College of Engineering, India
Dr. Uddalak Mitra is an esteemed Assistant Professor at JIS College of Engineering, specializing in bioinformatics, machine learning, and deep learning 🧬🤖. With a strong academic foundation and a passion for research, he has significantly contributed to the intersection of computational intelligence and biological sciences. His expertise lies in decoding DNA, RNA, and protein sequences using cutting-edge AI techniques, paving the way for advancements in healthcare and genomics. Dr. Mitra’s work seamlessly blends theoretical knowledge with real-world applications, making impactful strides in both academia and industry.
Dr. Mitra has built a solid academic background in computational sciences, equipping himself with the expertise required to address complex biological challenges. His educational journey has provided him with the technical prowess to integrate artificial intelligence into biomedical research.
As an Assistant Professor at JIS College of Engineering, Dr. Mitra actively engages in research and mentoring, shaping the next generation of scientists. His work focuses on applying machine learning models to analyze biological data, improving early disease detection methodologies. Additionally, he has authored several research papers and contributed to the academic community through his innovative studies.
Dr. Mitra has made commendable contributions to scientific research, earning recognition for his published works. He holds 9 patents, showcasing his dedication to innovation. His memberships in esteemed organizations like IFERP and ISTE reflect his commitment to professional development and research excellence.
His research primarily revolves around bioinformatics, machine learning, and deep learning. He explores information-theoretic tools for biological sequence analysis, integrating artificial intelligence to derive meaningful insights from genomic data. His recent studies focus on clinical applications of AI, particularly in disease diagnosis and personalized medicine.
Dr. Uddalak Mitra is a pioneering researcher dedicated to bridging the gap between bioinformatics and artificial intelligence. His contributions to genomic research, coupled with his expertise in AI-driven disease diagnosis, make him a valuable asset to the scientific community. With a strong foundation in computational biology, he continues to push the boundaries of research, striving for innovations that benefit both medicine and technology.
Leveraging AI and Machine Learning for Next-Generation Clinical Decision Support Systems (CDSS) – Published in AI-Driven Innovation in Healthcare Data Analytics, 2025.
Cognitive Handwriting Insights for Alzheimer’s Diagnosis: A Hybrid Framework – Information, 2025
Integrated System for Disease Detection Using Semiconductor-Based Gas Sensors and AI/ML – IN Patent A61B0005080000, 2025
Significance of AI/ML Wearable Technologies for Education and Teaching – Wearable Devices and Smart Technology for Educational Teaching Assistance, 2025
Integrating AI/ML With Wearable Devices for Monitoring Student Mental Health – Wearable Devices and Smart Technology for Educational Teaching Assistance, 2025
The Evolution of Entrepreneurship in the Age of AI – Advanced Intelligence Systems and Innovation in Entrepreneurship, 2024
A Novel Algorithm for Genomic STR Mining: Application to Phylogeny Reconstruction and Taxa Identification – International Journal of Bioinformatics Research and Applications, 2024
PhD Student, National University of Sciences and Technology, Islamabad, Pakistan
Sara Tehsin is a motivated and results-driven professional with over ten years of experience in Image Processing and Machine Learning. As an Engineering Lecturer at HITEC University in Taxila, Pakistan, she excels in delivering high-quality educational experiences and has a proven track record of producing outstanding results through her strong work ethic, adaptability, and effective communication skills. She is passionate about academic development and seeks opportunities to contribute her expertise while furthering her professional growth. 📚💻
Sara Tehsin is currently pursuing a PhD in Computer Engineering at the National University of Sciences and Technology (NUST), Islamabad, where she has achieved a remarkable GPA of 3.83/4.00. Her research focuses on Digital Forensics, Deep Learning, and Digital Image Processing. She holds a Master’s degree in Computer Engineering from NUST, where she graduated with a GPA of 3.7/4.0, and a Bachelor’s degree from The Islamia University of Bahawalpur, with a GPA of 3.36/4.00. 🎓🌟
Sara has extensive teaching experience, currently serving as an Engineering Lecturer at HITEC University since September 2019, where she develops engaging curriculum and delivers lectures aligned with international standards. Previously, she was a Computer Science Lecturer at Sharif College of Engineering and Technology, and she also served as a Teaching Assistant at NUST and a Lab Engineer at Foundation University. Her roles have encompassed curriculum development, practical instruction, and student support in various computer science subjects. 👩🏫🔧
Sara’s research interests encompass Digital Forensics, Deep Learning, Digital Image Processing, and Machine Learning. She focuses on developing innovative solutions for image recognition and forgery detection, contributing significantly to the fields of computer vision and machine learning. Her work aims to enhance the accuracy and efficiency of image processing systems. 🧠🔍
Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition
S. Tehsin, S. Rehman, M.O.B. Saeed, F. Riaz, A. Hassan, M. Abbas, R. Young, …
IEEE Access, 5, 24495-24502 (2017)
Cited by: 21
Improved maximum average correlation height filter with adaptive log base selection for object recognition
S. Tehsin, S. Rehman, A.B. Awan, Q. Chaudry, M. Abbas, R. Young, A. Asif
Optical Pattern Recognition XXVII, 9845, 29-41 (2016)
Cited by: 18
Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments
S. Tehsin, S. Rehman, F. Riaz, O. Saeed, A. Hassan, M. Khan, M.S. Alam
Pattern Recognition and Tracking XXVIII, 10203, 28-39 (2017)
Cited by: 12
Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter
S. Tehsin, S. Rehman, A. Bilal, Q. Chaudry, O. Saeed, M. Abbas, R. Young
Pattern Recognition and Tracking XXVIII, 10203, 22-37 (2017)
Cited by: N/A
university faculty, shahid beheshti university, Iran
🎓 Dr. Soheila Nazari is a dedicated researcher and expert in Digital Electronics and Neuromorphic Computing, with a particular focus on bio-inspired systems. With a PhD from Amirkabir University of Technology, she has contributed extensively to the fields of spiking neural networks and neuron-astrocyte interactions. Dr. Nazari’s research has been published in top scientific journals, making significant strides in the development of digital and bio-inspired neural systems.