Dr. Aiai Wang | Machine Learning | Best Researcher Award

Dr. Aiai Wang | Machine Learning | Best Researcher Award

Doctoral student, University of Science and Technology Beijing, China

Ai-Ai Wang is a passionate and dedicated young researcher born in March 1998 in Langfang, Hebei Province, China. A proud member of the Communist Party of China (CPC), she is currently based at the University of Science and Technology Beijing (USTB), where she serves as the Secretary of the 16th Party Branch, 4 Zhaizhai. With a solid academic foundation in mining and civil engineering, Ai-Ai has excelled in both academic and research spheres, contributing significantly to digital and intelligent mining technologies. Her work emphasizes physical dynamics in tailings sand cementation and filling, showing strong potential for innovation in sustainable mining practices.

Publication Profile

Scopus

🎓Education Background:

Ai-Ai Wang completed her Bachelor of Science in Mining Engineering from North China University of Science and Technology in 2021. She further pursued her Master’s degree in Civil Engineering at the University of Science and Technology Beijing (2021.09–2024.06), affiliated with the School of Civil and Resource Engineering.

🛠️Professional Experience:

Alongside her academic journey, Ai-Ai has undertaken significant responsibilities, currently serving as Secretary of the Party Branch at USTB. Her leadership extends beyond administration into collaborative research projects, software development, and patent contributions under renowned mentors such as Prof. Cao Shuai. She has played vital roles in developing intelligent systems for mining operations, reinforcing her multidisciplinary strengths.

🏅Awards and Honors:

Ai-Ai Wang has been recognized extensively for her academic and research excellence. Notable accolades include the “Top Ten Academic Stars” at USTB (2023), a National Scholarship for Master’s Degree Students (2022), the prestigious Taishan Iron and Steel Scholarship (2023), and multiple First-Class Academic Scholarships from USTB. She was twice named an Outstanding Three-Good Graduate Student and honored by her school as an outstanding individual. Moreover, she has received scientific awards such as the First Prize from the China Gold Association and the Second Prize from the China Nonferrous Metals Industry for her impactful contributions to green and safe mining.

🔬Research Focus:

Ai-Ai Wang’s research is rooted in advanced techniques of tailings sand cementation, intelligent filling systems, and digital mining. She explores the structural stability of backfills, application of nanomaterials, and CT-based 3D modeling of internal structures. Her work blends civil engineering, environmental safety, and digital innovation, aiming to enhance sustainability and efficiency in modern mining. She also contributes to cutting-edge software systems and patented technologies for mining design and operation support.

📝Conclusion:

Ai-Ai Wang stands out as a promising engineer and researcher whose academic achievements, professional dedication, and innovative research in intelligent mining set a high standard for future civil and mining engineers. Her trajectory reflects not just technical mastery but a deep commitment to sustainable and smart engineering solutions in the mining industry.

📚Top Publications with Details

Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading – Construction and Building Materials, 2022
Cited by: 26 articles
Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill – Construction and Building Materials, 2022
Cited by: 20 articles
Quantitative analysis of pore characteristics of nanocellulose reinforced cementitious tailings fills using 3D reconstruction of CT images – Journal of Materials Research and Technology, 2023
Cited by: 12 articles

 

Dr. Jiaheng Peng | Data Science | Best Researcher Award

Dr. Jiaheng Peng | Data Science | Best Researcher Award

PhD Candidate, East China Normal University, China

Jiaheng Peng is a dedicated Ph.D. candidate at East China Normal University, specializing in Open Source Ecosystem, Natural Language Processing, and Evaluation Science. With a strong academic record and a passion for research, he has contributed significantly to understanding Open Source dataset evaluation. His work bridges the gap between academic research and real-world Open Source applications, earning him recognition in the field.

Publication Profile

Google Scholar

🎓 Academic Background

Jiaheng Peng is pursuing his Ph.D. at East China Normal University, focusing on innovative methods to assess Open Source datasets. His research emphasizes citation network analysis, evaluating long-term dataset usage, and developing advanced Natural Language Processing (NLP) models. His academic journey is marked by high-impact publications in top-tier journals and international conferences, reflecting his expertise in computational analysis and data evaluation.

👨‍💼 Professional Experience

Although Jiaheng does not have industry consultancy or ongoing research projects, his scholarly contributions have made a substantial impact on Open Source ecosystem analysis. He actively publishes in high-impact scientific journals and conferences, ensuring that his findings help enhance dataset evaluation metrics. His commitment to advancing data-driven methodologies sets a solid foundation for future research in Open Source analysis.

🏆 Awards and Honors

Jiaheng Peng’s research excellence has been acknowledged with the Best Paper Award at the 1st Open Source Technology Academic Conference (2024). His publications in Q1-ranked journals further highlight his academic impact. His continuous contributions to the Open Source community demonstrate his dedication to advancing research and innovation in Open Source evaluation.

🔬 Research Focus

Jiaheng’s research primarily addresses the limitations of traditional Open Source data insight metrics. His work connects Open Source datasets with their corresponding academic papers, evaluating their significance through citation network mining. By bridging Open Source data with academic insights, he introduces novel evaluation methodologies that enhance dataset usability and long-term impact analysis. His research also extends into Aspect-Based Sentiment Classification, employing advanced Graph Attention Networks and NLP models to extract meaningful insights.

📌 Conclusion

Jiaheng Peng is a rising scholar in the Open Source and NLP domains, with a keen focus on dataset evaluation, citation network analysis, and sentiment classification. His academic contributions, recognized through prestigious awards and top-tier publications, establish him as a promising researcher dedicated to advancing Open Source dataset analytics. With a commitment to scientific excellence, his work continues to influence the global research community.

📚 Publication Top Notes

Evaluating long-term usage patterns of open source datasets: A citation network approach
BenchCouncil Transactions on Benchmarks, Standards and Evaluations (2025)
Cited by: Pending

DRGAT: Dual-relational graph attention networks for aspect-based sentiment classification
Information Sciences (2024)
Cited by: Pending

Data Driven Visualized Analysis: Visualizing Global Trends of GitHub Developers with Fine-Grained Geo-Details
International Conference on Database Systems for Advanced Applications (2024)
Cited by: Pending

ASK-RoBERTa: A pretraining model for aspect-based sentiment classification via sentiment knowledge mining”
Knowledge-Based Systems (2022)
Cited by: Multiple researchers in NLP and sentiment analysis

Rab Nawaz Bashir | Machine Learning | Best Researcher Award

Dr. Rab Nawaz Bashir | Machine Learning | Best Researcher Award

Assistant Professor, COMSATS University, Pakistan

Dr. Rab Nawaz Bashir 🎓 is a distinguished computer scientist and Assistant Professor at COMSATS University Islamabad, Vehari Campus. He holds a Ph.D. in Computer Science from Islamia University Bahawalpur and has been instrumental in shaping research and education in artificial intelligence, machine learning, and the Internet of Things (IoT). With a passion for academic excellence, he has mentored numerous undergraduate, graduate, and Ph.D. students, guiding them toward impactful research and industry readiness. His dedication to scholarly contributions and innovative teaching has made him a respected figure in the field of computer science.

Publication Profile

Education 🎓

Dr. Bashir has a strong academic foundation, earning his Ph.D. in Computer Science (2021) from Islamia University Bahawalpur. Prior to that, he completed an MS in Computer Science (2015) from the same institution. His educational journey began with a Master in Computer Science (MCS) from Pir Mehr Ali Shah University of Arid Agriculture (2008). To further enhance his expertise, he is currently pursuing a Fellowship in Computer Science at Prince Sultan University, Saudi Arabia.

Experience 👨‍🏫

With over 15 years of experience, Dr. Bashir has significantly contributed to academia and research. Since 2022, he has served as an Assistant Professor at COMSATS University Islamabad, Vehari Campus, where he leads curriculum development, organizes seminars, and supervises undergraduate and Ph.D. research. Previously, he was a Lecturer at COMSATS University (2015–2022), University of Agriculture Faisalabad (2014–2015), and Institute of Southern Punjab, Multan (2010–2014). Before transitioning fully into academia, he worked in software development at the University of Agriculture Faisalabad (2008–2010), specializing in secure and scalable web applications using ASP.NET and SQL Server.

Awards and Honors 🏆

Dr. Bashir has been recognized multiple times for his outstanding contributions to research and academic excellence. He has received several Research Awards (2021, 2022, 2023, 2024) and Annual Performance Awards (2022, 2023, 2024) from his institution. Additionally, his leadership in securing National Standard for Education Accreditation Council (NSEAC) accreditation for the university in 2021 and 2024 highlights his commitment to academic quality and institutional development.

Research Focus 🔬

Dr. Bashir’s research spans various cutting-edge domains, including machine learning, IoT, and computer programming. His work emphasizes real-world applications, such as IoT-enabled smart agriculture, machine learning-based fraud detection, and deep learning for natural image processing. His interdisciplinary collaborations have resulted in high-impact research, contributing to advancements in federated learning, fog computing, and agricultural technology.

Conclusion 🌟

Dr. Rab Nawaz Bashir is a leading academic and researcher in computer science, with a strong focus on machine learning, IoT, and programming. His dedication to mentoring students, publishing impactful research, and advancing academic excellence has earned him numerous awards and recognitions. With a vision for future innovations, he continues to push the boundaries of computer science, contributing to both academia and industry through groundbreaking research and leadership.

Publications 📚

A Novel 1-Dimensional Cosine Chaotic Equation and Digital Image Encryption Technique (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3447889

Federated Learning (FL) Model of Wind Power Prediction (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3415781

IoT-Enabled Firmness Grades of Tomato in Cold Supply Chain Using Fusion of Whale Optimization Algorithm and Extreme Learning Machine (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3379327

Mushroom Species Classification in Natural Habitats Using Convolutional Neural Networks (CNN) (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3502543

Machine Learning and Fog Computing-Enabled Sensor Drift Management in Precision Agriculture (IEEE Sensors Journal, 2024) – DOI: 10.1109/JSEN.2024.3451662

Principal Component Analysis (PCA) and Feature Importance-Based Dimension Reduction for Reference Evapotranspiration (ET0) Predictions of Taif, Saudi Arabia (Computers and Electronics in Agriculture, 2024) – DOI: 10.1016/j.compag.2024.109036

Ensemble Deep Learning-Based Prediction of Fraudulent Cryptocurrency Transactions (IEEE Access, 2023) – DOI: 10.1109/ACCESS.2023.3310576

Internet of Things Based Weekly Crop Pest Prediction by Using Deep Neural Network  (IEEE Access, 2023) – DOI: 10.1109/ACCESS.2023.3301504

Stacked Ensemble Model for Tropical Cyclone Path Prediction (IEEE Access, 2023) – DOI: 10.1109/ACCESS.2023.3292907

Smart Reference Evapotranspiration Using Internet of Things and Hybrid Ensemble Machine Learning Approach (Internet of Things, 2023) – DOI: 10.1016/j.iot.2023.100962

Mr. Ali Beikmohammadi | Machine Learning | Best Researcher Award

Mr. Ali Beikmohammadi | Machine Learning | Best Researcher Award

PhD Researcher, Stockholm University, Sweden

👨‍💻 Ali Beikmohammadi is a dedicated researcher in Reinforcement Learning, Deep Learning, and Federated Learning. Currently pursuing his Ph.D. in Computer and Systems Sciences at Stockholm University, Sweden, he has made remarkable contributions to AI research, publishing 15+ papers in top-tier conferences and journals. With a strong foundation in stochastic optimization, telecommunications, and cyber-physical systems, Ali has worked on various industry projects and supervised 30+ Master’s students. His expertise extends to high-performance computing, AI applications in healthcare, and distributed learning, making him a highly influential figure in AI research. 🚀

Publication Profile

Education

🎓 Ali holds a Ph.D. in Computer and Systems Sciences (2021–Present) from Stockholm University, Sweden, where he focuses on sample-efficient reinforcement learning and AI-driven optimization. He earned an M.Sc. in Electrical Engineering (Digital Electronic Systems) (2017–2019) from Amirkabir University of Technology, Iran, specializing in deep learning for plant classification. His B.Sc. in Electrical Engineering (Electronics) (2013–2017) from Bu-Ali Sina University, Iran, involved research on license plate recognition using computer vision. 📚

Experience

💡 With extensive research and industry collaborations, Ali has supervised 30+ Master’s students at Stockholm University and Karolinska Institutet, applying AI to healthcare, recommendation systems, forecasting, and network optimization. He has also instructed 91 students in Health Informatics courses, focusing on time-series analysis, deep learning, and reinforcement learning. His industry collaborations include Scania CV AB, Hitachi Energy, and the University of California, where he played key roles in algorithm design, pipeline development, and AI-driven performance optimization. 🤖

Awards and Honors

🏆 Ali’s exceptional contributions to AI and engineering have earned him prestigious scholarships such as the Lars Hierta Memorial Foundation Scholarship (2025) and the Rhodins, Elisabeth, and Herman Memory Scholarship (2024). He is a member of the Iran National Elites Foundation and has received the Outstanding Paper Award at the 5th ICSPIS’19 Conference. His academic excellence is further highlighted by ranking 1st in GPA during his B.Sc. and M.Sc. studies. 🌟

Research Focus

🔬 Ali’s research revolves around Reinforcement Learning, Deep Learning, and Federated Learning, with a strong emphasis on stochastic optimization, telecommunications, and cyber-physical systems. His recent work explores teacher-assisted reinforcement learning, federated learning without data similarity constraints, and cost-sensitive AI models for industrial applications. His contributions aim to enhance AI’s efficiency, scalability, and applicability across domains like healthcare, robotics, and automation. ⚙️

Conclusion

🌍 Ali Beikmohammadi is an accomplished AI researcher, educator, and industry collaborator pushing the frontiers of Reinforcement Learning, Deep Learning, and Federated Learning. With multiple high-impact publications, prestigious awards, and hands-on experience in AI-driven solutions, he continues to bridge the gap between academic research and real-world AI applications. His passion for cutting-edge AI innovations positions him as a leading voice in modern AI research. 🚀✨

Publications

Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS Upsampling under Varying Imbalance Levels

TA-Explore: Teacher-assisted exploration for facilitating fast reinforcement learning – Published at International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2023)Paper Link

Comparing NARS and Reinforcement Learning: An Analysis of ONA and Q-Learning AlgorithmsArtificial General Intelligence Conference (2023)Paper Link

Human-inspired framework to accelerate reinforcement learningarXiv (2023)Paper Link

Compressed federated reinforcement learning with a generative modelECML-PKDD (2024)Paper Link

On the Convergence of Federated Learning Algorithms without Data SimilarityIEEE Transactions on Big Data (2024)Paper Link

Parallel Momentum Methods Under Biased Gradient EstimationsIEEE Transactions on Control of Network Systems (2025)Paper Link

A Cost-Sensitive Transformer Model for Prognostics Under Highly Imbalanced Industrial DataarXiv (2024)Paper Link

Mr. Ahmad Faraz Hussain | Machine learning | Best Scholar Award

Mr. Ahmad Faraz Hussain | Machine learning | Best Scholar Award

PhD student, Zhejiang university, China

Ahmad Faraz Hussain is an accomplished researcher and engineer specializing in audio signal processing, speaker recognition, and wireless sensor networks. With a strong academic background and extensive technical experience, he has contributed significantly to the field of electronics and information engineering. His work spans research, teaching, and industry, reflecting his passion for innovation and education.

Publication Profile

Scopus

🎓 Education:

Ahmad Faraz Hussain earned his Master of Science in Electronics & Information Engineering from the South China University of Technology, China (2017–2019), achieving an impressive 90%. His thesis focused on “Speaker Recognition with Emotional Speech,” showcasing his expertise in audio processing. He completed his Bachelor of Science in Electrical Engineering from the University of Engineering and Technology, Peshawar, Pakistan (2009–2014), with a thesis on “ZigBee-Based Wireless Sensor Network for Building Safety Monitoring.”

💼 Professional Experience:

Ahmad has a diverse professional journey, beginning as a Research Assistant at the South China University of Technology (2017–2019), where he worked on cutting-edge projects in speech recognition. Before that, he served as a Lecturer at Polytechnical College Kohat (2016–2017), imparting knowledge to aspiring engineers. His technical expertise was further honed during his two-year tenure as a Technical Engineer at PTCL, Pakistan, where he worked on telecommunications and networking solutions.

🏆 Awards and Honors:

Ahmad was a recipient of the prestigious CSC Scholarship, which enabled him to pursue his master’s degree in China. His academic excellence and dedication to research have earned him recognition in both academic and professional circles.

🔬 Research Focus:

Ahmad’s research interests lie in audio signal processing, speaker recognition, speech recognition, and wireless sensor networks. His work focuses on developing advanced methodologies for improving speech-based systems and enhancing security through smart sensor networks. His contributions to these fields are evident in his multiple publications and research projects.

🔚 Conclusion:

Ahmad Faraz Hussain is a dedicated researcher and engineer with a strong foundation in speech and wireless sensor technologies. His academic achievements, professional experience, and research contributions highlight his commitment to innovation and education. With a passion for higher learning and community service, he continues to make impactful contributions to the field of electronics and information engineering. 🚀

📚 Publications:

Three-Dimensional Dynamic Positioning Using a Novel Lyapunov-Based Model Predictive Control for Small Autonomous Surface/Underwater Vehicles

Fish Detection and Classification Based on Improved ViT

ZigBee-Based Wireless Sensor Network for Building Safety Monitoring – Published in the Journal of TWASP. Read here.

Speaker Recognition with Emotional Speech – Published in GSJ. Read here.

Speech Emotion Recognition – Under review.

ZigBee and GSM-Based Security System for Business Places– Accepted for publication.

Internet of Things-Based Information System for Smart Wireless Sensor Healthcare Applications – Submitted for review.

sajjad qureshi | Artificial Intelligence Award | Computer Vision Contribution Award

Dr. sajjad qureshi | artificial intelligence award | Computer Vision Contribution Award

deputy Director (IT), multan electric power company, Pakistan

📘 Dr. Sajjad Hussain Qureshi is a seasoned professional with over 21 years of experience in Information Technology. Currently serving as the Deputy Director (IT) at Multan Electric Power Company for the past two decades, Dr. Qureshi has established expertise in system analysis and design, machine learning, cybersecurity, IT auditing, and project management. His multidisciplinary educational background, including a Ph.D. in Computer Science, Ph.D. in Agriculture, and an MBA in Human Resource Management, has enabled him to excel in IT-based quality assurance, data analysis, and human resource management. He is passionate about utilizing cutting-edge technologies to create impactful solutions in diverse domains.

Publication Profile

ORCID

Education

🎓 Dr. Qureshi holds a Ph.D. in Computer Science, a Ph.D. in Agriculture, and an MBA in Human Resource Management. His diverse academic achievements reflect his commitment to integrating IT with interdisciplinary knowledge for impactful research and practical solutions.

Experience

💼 Dr. Qureshi has an extensive career spanning over 21 years in the IT field. For the last 20 years, he has been a cornerstone of the Multan Electric Power Company, where he serves as the Deputy Director (IT). His experience covers IT infrastructure development, LAN networks, client/server environments, cybersecurity, and customer billing systems. He also excels in IT-based quality assurance and control, project management, and data management.

Research Interests

🔍 Dr. Qureshi’s research interests lie at the intersection of machine learning, deep learning, cybersecurity, data management, and agriculture technology. He is particularly interested in applying advanced computational techniques to solve real-world problems, such as disease detection in crops and classification of linguistic data.

Awards

🏆 Dr. Qureshi has been recognized for his contributions to IT and interdisciplinary research, achieving notable academic and professional milestones. His work continues to inspire innovation and collaboration across diverse fields.

Publications

Classification of English Words into Grammatical Notations Using Deep Learning Technique (2024)
Imran, M., Qureshi, S. H., Qureshi, A. H., & Almusharraf, N.
Published in Information, 15(12), 801.
DOI: 10.3390/info15120801

Rational Study Of The Use Of Computer-Aided Softwares By The Composers (2024)
Qureshi, S. H., Javaid, S., & Javaid, M. A.
Published in Pakistan Journal of Society, Education and Language, 10(2), 213–219.

Comparison of Conventional and Computer-Based Detection of Severity Scales of Stalk Rot Disease in Maize (2024)
Qureshi, S.H., Khan, D.M., Razzaq, A., Baig, M.M., & Bukhari, S.Z.A.
Published in SABRAO Journal of Breeding and Genetics, 56(1), 292–301.
DOI: 10.54910/sabrao2024.56.1.26

Intelligent Resistant Source Detection Against Stalk Rot Disease of Maize Using Deep Learning Technique (2023)
Qureshi, S.H., Khan, D.M., & Bukhari, S.Z.
Published in SABRAO Journal of Breeding and Genetics, 55(6), 1972–1983.

Abdelhak Bouayad | machine Learning | Young Scientist Award

Dr. Abdelhak Bouayad | machine Learning | Young Scientist Award

PhD, UM6P, Morocco

📚 Abdelhak Bouayad is a dedicated researcher in artificial intelligence and privacy from the College of Computing at Mohammed VI Polytechnic University in Ben-Guérir, Morocco. His work explores innovative methods to protect sensitive data in machine learning models, ensuring both privacy and AI effectiveness. With a robust background in machine learning, data security, and federated learning, Abdelhak aims to drive advancements in privacy-preserving AI applications.

Publication Profile

Google Scholar

Education

🎓 Abdelhak Bouayad is currently pursuing a Ph.D. in Computer Science at Mohammed VI Polytechnic University under the guidance of Dr. Ismail Berrada. He holds an M.Sc. in Big Data Analytics and Smart Systems from Sidi Mohamed Ben Abdellah University, where he developed a thesis on lip reading for speech recognition, and a B.A. in Mathematics and Computer Science from the same institution in Fès, Morocco.

Experience

👨‍💻 Abdelhak has served as a Research Assistant at the College of Computing at Mohammed VI Polytechnic University since 2019. His research delves into the intersection of machine learning, privacy, and federated learning, with a focus on protocols to secure data exchanges and safeguard privacy within machine learning systems.

Research Focus

🔍 Abdelhak’s research is centered on artificial intelligence, machine learning, and privacy-preserving mechanisms. His primary focus lies in creating algorithms and protocols that protect sensitive data in machine learning models from potential exploitation. He aims to strengthen federated learning systems to ensure robust data privacy without compromising AI performance.

Awards and Honors

🏆 Abdelhak was awarded the College of Computing Fellowship for a pre-doctoral fellowship at Mohammed VI Polytechnic University from October 2018 to October 2019. This fellowship recognizes his commitment to research excellence and contributions to privacy-preserving AI methods.

Publication Highlights

NF-NIDS: Normalizing Flows for Network Intrusion Detection Systems

On the atout ticket learning problem for neural networks and its application in securing federated learning exchanges

Investigating Domain Adaptation for Network Intrusion Detection

 

Hsiu Hsia Lin | Machine learning | Best Researcher Award

Prof. Hsiu Hsia Lin | Machine learning | Best Researcher Award

Research Fellow, Chang Gung Memorial Hospital, Taiwan

Dr. Hsiu-Hsia Lin is a dedicated Research Fellow at the Craniofacial Research Center, Chang Gung Memorial Hospital, Taiwan, and an Adjunct Assistant Professor at the Graduate Institute of Dental and Craniofacial Science, Chang Gung University. With a strong foundation in AI and 3D craniofacial image processing, her research contributes significantly to advancements in orthognathic surgery. Dr. Lin’s expertise in surgical navigation and CAD/CAM-assisted surgery is pivotal in improving craniofacial surgical outcomes. 🌟

Publication Profile

Education:

Dr. Lin earned her Ph.D. in Computer Science and Engineering from National Chung Hsing University, Taiwan, following a Master’s in Computer Science from Tunghai University. Her academic journey is deeply rooted in computer science, blending AI with craniofacial research. 🎓📚

Experience:

Dr. Lin has held key research positions, including Assistant Research Fellow and Postdoctoral Fellow at the Craniofacial Research Center, Chang Gung Memorial Hospital. Her postdoctoral work also extended to the Department of Computer Science and Engineering at National Chung Hsing University. Her extensive experience has helped bridge the gap between AI technology and clinical applications. 💼🔬

Research Focus:

Dr. Lin’s research revolves around Pattern Recognition, Artificial Intelligence, and 3D Craniofacial Image Processing. She specializes in computer-aided surgical simulation for orthognathic surgery, surgical navigation, and CAD/CAM-assisted procedures, aiming to optimize outcomes in facial surgery. 🧠💻

Awards and Honors:

Dr. Lin has received multiple recognitions for her contributions to craniofacial research and AI in surgery. Her work continues to shape modern surgical approaches, particularly in orthognathic surgery, enhancing patient outcomes. 🏆👏

Publication Top Notes:

Dr. Lin’s publications focus on integrating AI with medical applications, particularly in 3D craniofacial analysis and orthognathic surgery. Her studies offer novel methods for surgical planning, facial attractiveness assessment, and facial symmetry evaluation.

Quantification of facial symmetry in orthognathic surgery (Dec. 2024) in Comput Biol Med., cited by 5 articles. DOI

Average 3D virtual sk

eletofacial model for surgery planning (Feb. 2024) in Plast Reconstr Surg., cited by 3 articles. DOI

Facial attractiveness assessment using transfer learning (Jan. 2024) in Pattern Recognit., cited by 4 articles. DOI

Optimizing Orthognathic Surgery (Nov. 2023) in J. Clin. Med., cited by 6 articles. DOI

Single-Splint, 2-Jaw Orthognathic Surgery (Nov. 2023) in J Craniofac Surg., cited by 2 articles. DOI

Applications of 3D imaging in craniomaxillofacial surgery (Aug. 2023) in Biomed J., cited by 7 articles. DOI

Facial Beauty Assessment using Attention Mechanism (Mar. 2023) in Diagnostics, cited by 8 articles. DOI

 

Tesfay Gidey | Artificial Intelligence | Best Researcher Award

Dr. Tesfay Gidey | Artificial Intelligence | Best Researcher Award

Lecturer, Addis Ababa Science and Technology University, Ethiopia

Tesfay Gidey Hailu is a highly skilled Information and Communication Engineer and data scientist with a passion for leveraging data to drive innovation and business insights. With expertise in computer science, software engineering, machine learning, and data analytics, he excels in problem-solving, leadership, and technology project management. Tesfay’s work focuses on indoor localization, signal processing, and health data applications, making him a forward-thinking leader in his field. His dedication to continuous learning and delivering actionable results underscores his impressive career in academia and industry. 💼🔧📊

Publication Profile

ORCID

Strengths for the Award:

  1. Diverse Expertise: Tesfay’s expertise spans across critical areas such as signal processing, indoor localization, machine learning, data fusion, and health informatics, aligning well with cutting-edge research areas.
  2. Impressive Academic Qualifications: Holding a Ph.D. in Information and Communication Engineering, along with two MSc degrees, he possesses deep knowledge in interdisciplinary fields.
  3. Research Contributions: He has authored numerous peer-reviewed publications in high-impact journals such as Sensors, Intelligent Information Management, and Journal of Biostatistics. His work in Wi-Fi indoor positioning, predictive modeling, and health informatics shows a broad application of research across industries.
  4. Leadership in Academia: His roles as Associate Dean and Head of Department demonstrate his leadership in driving research, improving curriculum quality, and promoting technology transfer.
  5. Innovative Research Focus: His Ph.D. dissertation on transfer learning for fingerprint-based indoor positioning and various data fusion methods reflect his innovative contributions to solving real-world problems with advanced technologies.

Areas for Improvement:

  1. Broader Industry Impact: While his research is highly academic, incorporating more industry-driven collaborations or commercial applications could strengthen the practical impact of his work.
  2. Public Engagement: Increasing public outreach and collaboration with non-academic sectors or public talks could elevate his visibility and expand the impact of his research findings.
  3. Global Collaboration: Expanding his research collaborations beyond local and regional levels, particularly with international industries, could further showcase the global relevance of his work.

Education 🎓

Tesfay holds a Ph.D. in Information and Communication Engineering from the University of Electronic Science and Technology of China (2023), where his research centered on signal and information processing applied to indoor positioning using machine learning algorithms. He also earned an MSc in Software Engineering from HILCOE School of Computer Science and Information Technology (2018) and an MSc in Health Informatics and Biostatistics from Mekelle University (2013). Additionally, he completed his BSc in Statistics with a minor in Computer Science at Addis Ababa University (2006). 📚💻📈

Experience 💼

Tesfay has held several leadership positions, including Associate Dean at Addis Ababa Science and Technology University (AASTU), where he led research, technology transfer, student recruitment, and faculty training initiatives. He was also the Head of Department and Coordinator at Jimma University, contributing to curriculum enhancement and student retention programs. His experience spans research in manufacturing industries, project management, and academic administration. 🏫📊👨‍🏫

Research Focus 🔬

Tesfay’s research focuses on signal processing, indoor localization, machine learning, data mining, and information fusion. He specializes in developing advanced models for indoor positioning systems, predictive modeling, and statistical quality control, aiming to solve complex problems in health informatics, manufacturing industries, and public health. His work integrates cutting-edge technologies to advance both theoretical and applied fields. 📡📉🤖

Awards and Honors 🏆

Tesfay has been recognized for his contributions to the fields of information and communication engineering and data science. He has received multiple awards and honors for his research and leadership roles in academia, particularly in driving innovative projects that bridge the gap between technology and industry. 🌍🎖️

Publications Highlights 📚

Tesfay has published extensively in top-tier journals, with a focus on indoor positioning systems, data fusion, and health informatics. His research includes the development of novel machine learning models and statistical analysis tools. His works have been widely cited, showcasing his impact in the academic community. 📊✍️

MultiDMet: Designing a Hybrid Multidimensional Metrics Framework to Predictive Modeling for Performance Evaluation and Feature Selection (2023). Intelligent Information Management, 15, 391-425. Cited by 2 articles. Link

Data Fusion Methods for Indoor Positioning Systems Based on Channel State Information Fingerprinting (2022). Sensors, 22, 8720. Cited by 15 articles. Link

Heterogeneous Transfer Learning for Wi-Fi Indoor Positioning Based Hybrid Feature Selection (2022). Sensors, 22, 5840. Cited by 10 articles. Link

OHetTLAL: An Online Transfer Learning Method for Fingerprint-Based Indoor Positioning (2022). Sensors, 22, 9044. Cited by 5 articles. Link

A Multilevel Modeling Analysis of the Determinants and Cross-Regional Variations of HIV Testing in Ethiopia (2016). J Biom Biostat, 7, 277. Cited by 8 articles. Link

Conclusion:

Tesfay Gidey Hailu’s robust academic background, extensive research portfolio, and leadership roles make him a strong candidate for the Best Research Award. His work in signal processing, machine learning, and data-driven innovation in health informatics and communication systems demonstrates a clear commitment to advancing technology and solving societal problems. While his impact could be enhanced by deeper industry collaborations and global outreach, his current achievements already reflect substantial contributions to the field, making him deserving of recognition.

 

Ehsan Mansouri | Machine learning | Best Researcher Award

Mr. Ehsan Mansouri | Machine learning | Best Researcher Award

Researcher, Inha University, South Korea

🧑‍💻 Ehsan Mansouri is a passionate software engineer and researcher specializing in cloud computing, machine learning, and data science. With a strong background in software engineering, he is committed to pushing the boundaries of technology to solve complex problems. Ehsan is currently a researcher at the Industrial Science and Technology Research Institute, Inha University, South Korea, where he explores innovative solutions in optimization and human-computer interaction.

Publication Profile

Google Scholar

Strengths for the Award

  1. Strong Educational Background: Ehsan Mansouri holds a Master’s degree in Software Engineering, specializing in cloud computing and optimization algorithms. His thesis focused on improving server efficiency in cloud environments, demonstrating his deep understanding of cutting-edge technology.
  2. Diverse Research Interests and Experience: His research spans multiple areas, including Machine Learning, Data Science, Cloud Computing, and Human-Computer Interaction, reflecting a broad and interdisciplinary approach. This is complemented by his experience as a researcher at Inha University and software engineer roles in both academic and private sectors.
  3. Publication Record: Mansouri has an impressive record of peer-reviewed publications, with multiple articles in reputable journals like Buildings, Journal of Forecasting, and Steel and Composite Structures. His works cover a range of topics from machine learning applications to software development for thermal analysis, illustrating his versatility as a researcher.
  4. Technical Proficiency: Proficient in various programming languages and machine learning frameworks, Mansouri has the technical skills required for developing innovative solutions. His expertise in data processing and visualization further enhances his research capabilities.
  5. Active Research Projects: Mansouri is actively involved in current research projects, such as developing machine learning models for predicting shear capacity of composite beams, highlighting his ongoing contributions to the field.

Areas for Improvement

  1. Focus on Core Research Strengths: While Mansouri has a broad range of research interests, a more concentrated focus on a specific niche area might help solidify his standing as an expert in that domain. This would enhance his recognition and impact in a highly specialized field.
  2. Increased Collaboration and Networking: Engaging in more international collaborations and expanding his network beyond his current institutions could amplify his research visibility and impact. This could include presenting at more international conferences and participating in cross-institutional research projects.
  3. Further Development of Communication Skills: Although Mansouri has achieved a high TOEFL score, enhancing his speaking skills (currently at 20/30) could improve his ability to present research findings effectively and engage with the global academic community more fluently.

 

Education

🎓 Master of Science in Software Engineering from Azad University of Birjand, Iran, where Ehsan developed a new data replication algorithm in cloud computing using particle swarm optimization. He also holds a Bachelor of Science in Software Engineering from the University of Birjand, Iran. His early education was at the National Organization for Development of Exceptional Talents (NODET) in Birjand, Iran.

Experience

💼 Ehsan has held various positions, including Researcher at Inha University, South Korea, and Software Engineer Expert at Birjand University of Medical Sciences and Butia’s Intelligent Sense of Communication in Iran. His experience ranges from software engineering to implementing innovative research projects in academia and private sectors.

Research Focus

🔍 Ehsan’s research interests include Machine Learning, Data Science, Cloud Computing, Human-Computer Interaction, Optimization, Data Grid, and Time Series Analysis. He is driven by a passion for creating efficient, scalable, and intelligent systems that enhance user experience and computational performance.

Awards and Honors

🏆 Ehsan Mansouri has achieved notable recognition in his field for his innovative work in cloud computing and data replication strategies, contributing significantly to enhancing server efficiency and optimization techniques in computational environments.

Publication Top Notes

📚 Ehsan has published several impactful papers in leading journals, including the Journal of Forecasting, Buildings, Steel and Composite Structures, and the Journal of Sustainability. His research contributions have been recognized and cited widely by peers in the field.

Ferreira, F.P.V., Jeong, S.H., Mansouri, E., Shamass, R., Tsavdaridis, K., Martins, C.H., De Nardin, S. (2024). Five Machine Learning Models Predicting the Global Shear Capacity of Composite Cellular Beams with Hollow-Core Units. Buildings. Link. Cited by: [2 articles].

Adnan, R.M., Mostafa, R.R., Dai, H.L., Mansouri, E., Kisi, O., Zounemat‐Kermani, M. (2024). Comparison of Improved Relevance Vector Machines for Streamflow Predictions. Journal of Forecasting, 43(1). Link. Cited by: [1 article].

Jeong, S.H., Mansouri, E., Ralston, N., Hu, J.W. (2024). An Advanced Software Interface to Make OpenSees for Thermal Analysis of Structures More User-Friendly. Steel and Composite Structures, 51(2). Link. Cited by: [3 articles].

Sabzekar, M., Mansouri, E., Deldari, A. (2023). A Data Replication Algorithm for Improving Server Efficiency in Cloud Computing Using PSO and Fuzzy Systems. Computer and Knowledge Engineering, 6(12), 1-14. Link. Cited by: [5 articles].

Mansouri, E., Manfredi, M., Hu, J.W. (2022). Environmentally Friendly Concrete Compressive Strength Prediction Using Hybrid Machine Learning. Journal of Sustainability, 14(20), 12990. Link. Cited by: [4 articles].

Conclusion

Ehsan Mansouri is a strong candidate for the Research for Best Researcher Award, given his robust educational background, diverse research interests, impressive publication record, and technical expertise. To further strengthen his candidacy, focusing on core research areas, expanding international collaborations, and refining communication skills would be beneficial. Overall, Mansouri demonstrates significant potential and contributions to the field of computer science and software engineering.