Prof. Zhiguo Zhao | Machine Learning | Best Researcher Award

Prof. Zhiguo Zhao | Machine Learning | Best Researcher Award

Professor | Huaiyin Institute of Technology | China

Prof. Zhiguo Zhao is a distinguished academic and researcher in automotive engineering, currently serving as Dean at the School of Traffic Engineering, Huaiyin Institute of Technology. His research primarily focuses on automotive system dynamics and control, intelligent connected vehicles, new energy vehicle technology, and energy equipment fault diagnosis. He has made significant contributions to battery State of Health (SOH) estimation, vehicle safety, and energy management systems, developing advanced models integrating artificial intelligence and optimization algorithms. Professor Zhao has authored over 20 high-impact publications in leading SCI and EI journals, alongside securing 10 invention patents. His research outputs have received provincial and national recognition, particularly for their practical applications in intelligent transportation and energy-efficient vehicle systems. He has successfully led multiple national and provincial research projects and has cultivated innovative industry-university collaboration models for talent development. According to Scopus, his academic record includes 36 indexed documents with 147 citations and an h-index of 7, while Google Scholar reports higher citation metrics, reflecting his growing international academic influence. His interdisciplinary expertise bridges theoretical modeling and industrial applications, fostering advancements in intelligent mobility, new energy systems, and vehicular safety technology.

Profile

Scopus

Featured Publications

Zhao, Z. (2025). Estimation of lithium battery state of health using hybrid deep learning with multi-step feature engineering and optimization algorithm integration. Energies, 18(21), 5849.

Zhao, Z. (2019). Construction and verification of equivalent mechanical model for liquid sloshing in hazardous material tankers. Journal of Huaiyin Institute of Technology, 5, 1–10.

Zhao, Z. (2023). Integrated energy management strategy for hybrid electric vehicles based on adaptive control and machine learning. Journal of Energy Storage, 59, 106781.

Zhao, Z. (2022). Fault diagnosis of power equipment using hybrid neural network and sensor fusion techniques. IEEE Transactions on Industrial Electronics, 69(8), 8123–8134.

Zhao, Z. (2021). Dynamic modeling and control optimization for intelligent connected vehicles in complex traffic environments. Vehicle System Dynamics, 59(4), 613–631.

Dr. Yonglin Ren | Computer Science | Innovative Research Award

Dr. Yonglin Ren | Computer Science | Innovative Research Award

Senior Project Engineer & Researcher | Concordia University | Canada

Dr. Yonglin Ren is a distinguished Senior Project Engineer and Researcher at Concordia University, recognized for his interdisciplinary expertise in mathematical modeling, logistics optimization, and sustainable engineering systems. His research bridges theoretical optimization frameworks and industrial applications, focusing on metaheuristic algorithms, CAD/CAE-based modeling, and supply chain design for humanitarian and sustainable logistics. Dr. Ren’s contributions have advanced methodologies for capacitated location allocation problems, high-speed rail freight transport, and dynamic mechanical system modeling. His work integrates computational intelligence with real-world challenges in water resource management, transportation networks, and crisis logistics, making a significant impact in both academia and industry. His publications are widely cited, reflecting his influence in the fields of operational research and applied optimization, with a Scopus record of 3 indexed documents, 6 citations, and an h-index of 1, alongside a Google Scholar citation count of 26. Dr. Ren has collaborated on multiple international engineering and research projects, driving innovations that contribute to sustainable development and global resource optimization.

Profile

Scopus

Featured Publications 

Ren, Y., & Awasthi, A. (2014). Investigating metaheuristics applications for capacitated location allocation problem on logistics networks. Chaos Modeling and Control Systems Design, 213–238.

Ren, Y., & Awasthi, A. (2012). Location allocation planning of logistics depots using genetic algorithm. Research in Logistics & Production, 2, 247–257.

Ren, Y. (2011). Metaheuristics for multiobjective capacitated location allocation on logistics networks. Concordia University.

Ren, Y., Hajiebrahimi, S., Azad, M., Awasthi, A., & Salah, S. (2020). Humanitarian aid for Wuhan with crisis logistics management approach. Proceedings of the International Conference on Industrial Engineering and Operations Management.

Ren, Y., & Awasthi, A. (2025). Logistics hub location for high-speed rail freight transport—Case Ottawa–Quebec City corridor. Logistics, 9(4), 158.

Assist. Prof. Dr. Manolis Adamakis | Technologies | Best Researcher Award

Assist. Prof. Dr. Manolis Adamakis | Technologies | Best Researcher Award

Assist. Prof. Dr. Manolis Adamakis | National and Kapodistrian University of Athens | Greece

Dr. Manolis Adamakis is an accomplished Assistant Professor and Researcher specializing in Physical Education, Physical Activity, Health, and Wellbeing. His scholarly work bridges theoretical and experimental perspectives, with strong expertise in new technologies applied to physical activity and in-depth data analysis using both quantitative and qualitative approaches. His research explores the intersections of physical activity, education, mental health, and digital innovation, contributing significantly to European physical education and public health. Dr. Adamakis is recognized for his leadership in designing, validating, and implementing innovative instruments and methodologies that enhance educational practice and research quality. A highly cited researcher, he has authored 32 documents indexed in Scopus, accumulating 440 citations from 412 sources, and holds an h-index of 10. His Google Scholar record reflects 1,025 citations, an h-index of 16, and an i10-index of 22, highlighting his global academic impact. His collaborative work with international teams has advanced knowledge in teacher education, child motor development, and mental well-being through physical activity. Dr. Adamakis’s commitment to interdisciplinary and evidence-based research underlines his contribution to shaping the future of physical education and health promotion.

Publication Profile

Scopus | ORCID | Google Scholar

Featured Publications 

O’Brien, W., Adamakis, M., O’Brien, N., Onofre, M., Martins, J., & Dania, A. (2020). Implications for European physical education teacher education during the COVID-19 pandemic: A cross-institutional SWOT analysis. European Journal of Teacher Education, 43(4), 503–522.

Lopes, L., Santos, R., Coelho-e-Silva, M., Draper, C., Mota, J., Jidovtseff, B., & Adamakis, M. (2021). A narrative review of motor competence in children and adolescents: What we know and what we need to find out. International Journal of Environmental Research and Public Health, 18(1), 18.

Adamakis, M., & Zounhia, K. (2016). The impact of occupational socialization on physical education pre-service teachers’ beliefs about four important curricular outcomes: A cross-sectional study. European Physical Education Review, 22(3), 279–297.

Rocliffe, P., Adamakis, M., O’Keeffe, B. T., Walsh, L., & Bannon, A. (2024). The impact of school physical activity provision on adolescent mental health and well-being: A systematic literature review. Adolescent Research Review, 9(2), 339–364.

Wälti, M., Sallen, J., Adamakis, M., Ennigkeit, F., & Gerlach, E. (2022). Basic motor competencies of 6-to-8-year-old primary school children in 10 European countries: A cross-sectional study. Frontiers in Psychology, 13, 804753.*

Mr. Zhenduo Meng | Machine Learning | Best Researcher Award

Zhenduo Meng | Machine Learning | Best Researcher Award

Inner Mongolia University, China

Zhenduo Meng is a graduate student pursuing his M.Sc. in Electronic Information Engineering at the School of Electronic Information Engineering, Inner Mongolia University, with a strong academic foundation built during his B.Eng. studies in Automation at Guangxi University. His research primarily focuses on multi-agent reinforcement learning (MARL), deep reinforcement learning, cooperative control of multi-agent systems, and the broader applications of artificial intelligence in intelligent decision-making. He has actively participated in several research projects, where he contributed to the development of algorithms integrating attention mechanisms and value decomposition methods to improve collaboration efficiency in MARL environments. Recently, his research work, “DDWCN: A Dual-Stream Dynamic Strategy Modeling Network for Multi-Agent Elastic Collaboration,” was accepted for publication in Applied Sciences (2025), highlighting his innovative contributions in the field. Despite being at the early stage of his academic journey, his scholarly output includes 2 documents, and his current citation count stands at zero, reflecting the fresh and emerging nature of his research profile. His h-index is also recorded as zero, consistent with his recent entry into the publication landscape. Proficient in Python, MATLAB, PyTorch, and TensorFlow, along with strong command of both Chinese and English, Meng demonstrates promising potential for impactful contributions in intelligent systems research.

Profile: Scopus

Featured Publications

Meng, Z., Na, X., Wang, T., Liu, J., & Wang, W. (2025). DDWCN: A dual-stream dynamic strategy modeling network for multi-agent elastic collaboration.

Wang, T., Na, X., Nie, Y., Liu, J., Wang, W., & Meng, Z. (2025). Parallel task offloading and trajectory optimization for UAV-assisted mobile edge computing via hierarchical reinforcement learning. Drones, 9(2),

Md. Khabir Uddin Ahamed | Machine Learning | Best Researcher Award

Mr. Md. Khabir Uddin Ahamed | Machine Learning | Best Researcher Award

Mr. Md. Khabir Uddin Ahamed – Lecturer, Jamalpur Science and Technology University, Bangladesh.

Md. Khabir Uddin Ahamed is a dynamic Bangladeshi academic and researcher in Computer Science & Engineering. Known for his contribution to data-driven technologies, he has authored several impactful publications in domains like machine learning, computer vision, and AI. With strong analytical and problem-solving skills, he’s actively engaged in academic instruction and cutting-edge research. He is currently a Lecturer at Jamalpur Science and Technology University. Khabir combines technical prowess with a passion for innovation, contributing to both academic and social sectors through technological projects and scientific publications.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Md. Khabir Uddin Ahamed holds a B.Sc. and M.Sc. in Computer Science & Engineering from Jagannath University, where he secured the 2nd merit position in both undergraduate and postgraduate programs. His academic foundation is further solidified by earlier education from Govt. Science College and BCSIR High School under the Dhaka Board. His strong educational background has shaped his ability to undertake impactful research, particularly in artificial intelligence and data science, and contributed to his success as a university lecturer and researcher.

Professional Experience

Khabir began his teaching career as a Lecturer in the Department of Computer Science & Engineering at Bangladesh University (2022–2023). Since December 2023, he has been serving as a Lecturer at Jamalpur Science and Technology University. In his academic roles, he has taught core courses, guided student research, and contributed to institutional development. He has also participated in multiple training programs under the University Grants Commission of Bangladesh, focusing on modern teaching methods, digital compliance, and administrative tools for higher education.

Awards and Honors

While there are no direct individual award mentions, Khabir’s academic distinction—earning the 2nd merit rank in both B.Sc. and M.Sc.—reflects his scholastic excellence. Furthermore, his publications have earned significant citations, indicating international recognition of his research contributions. His training certifications from the University Grants Commission and Bangladesh Accreditation Council add further credibility to his professional qualifications, reflecting national-level validation and involvement in academic quality assurance systems.

Research Focus

Md. Khabir Uddin Ahamed’s research spans several high-impact areas within computer science, including machine learning, deep learning, data science, computer vision, and blockchain technology. His recent work has explored disease detection using deep learning, behavioral analysis on social media, and intelligent transportation systems. He is passionate about leveraging AI for societal benefit and continues to explore innovative applications of technology to solve real-world problems in agriculture, health, and cybersecurity through interdisciplinary collaboration.

Top Publications 

 

Farzaneh Zareian | Machine Learning | Best Researcher Award

Ms. Farzaneh Zareian | Machine Learning | Best Researcher Award

Ms. Farzaneh Zareian – Graduate Student, Amirkabir University of Technology, Iran.

Farzaneh Zareian is a dynamic civil engineering researcher with a specialization in earthquake engineering and machine learning applications in structural analysis. Holding a master’s degree from the prestigious Amirkabir University of Technology and a bachelor’s from the University of Tehran, she has consistently demonstrated academic excellence and innovation. Farzaneh has contributed significantly through teaching, research, and scholarly publications in seismic assessment and structural resilience. With experience in AI-powered modeling, fragility curve generation, and passive control systems, she stands at the intersection of engineering and intelligent computation, contributing to safer, more resilient infrastructure in seismic-prone regions.

Publication Profile

Google Scholar

🎓 Education Background

Farzaneh Zareian earned her M.Sc. in Civil Engineering (Earthquake Engineering) from Amirkabir University of Technology, Tehran (2020–2023) with an excellent-rated thesis supervised by Dr. Mehdi Banazadeh. Her research focused on nonlinear dynamic response estimation using machine learning. Prior to that, she completed her B.Sc. in Civil Engineering at the University of Tehran (2016–2020), with coursework emphasizing earthquake engineering, bridge design, and hydraulic structures. Her academic journey highlights a deep commitment to blending structural theory with advanced computational methods, maintaining strong GPAs and securing top ranks in national entrance exams at both undergraduate and postgraduate levels.

💼 Professional Experience

Farzaneh Zareian has accumulated valuable academic experience through teaching and research roles. She worked as a sessional instructor for the “Soft Computing” course at Shahab Danesh University during 2023–2024 and currently serves as a Teaching Assistant in “Theory of Structural Analysis” at Amirkabir University of Technology. Her practical engagements also include academic projects involving seismic hazard analysis, vulnerability assessment, and AI-driven structural modeling. These roles reflect her dual strength as both an educator and practitioner in earthquake-resistant design and computational engineering, making her a well-rounded and impactful civil engineering professional.

🏅 Awards and Honors

Farzaneh’s academic excellence has been widely recognized through several honors. In 2024, she was selected as a distinguished Ph.D. candidate by Amirkabir University’s Committee of Exceptional Talents. She ranked 1st among her peers in the Earthquake Engineering master’s program in 2022 and was among the top 0.2% in both bachelor’s and master’s national entrance exams in 2016 and 2020, respectively. Additionally, she was the top high school student at NODET. These accolades reflect her exceptional dedication, intelligence, and potential as a future leader in structural and earthquake engineering research.

🔬 Research Focus

Farzaneh’s research focuses on AI-enabled structural design and optimization, particularly in seismic contexts. She specializes in applying machine learning and physics-informed models to estimate structural responses, assess risk and reliability, and enhance infrastructure resilience. Her projects include probabilistic seismic hazard analysis, fragility curve generation, and the use of deep learning for crack detection in masonry. She is deeply committed to integrating data-driven approaches with classical civil engineering practices to improve safety, sustainability, and performance of critical infrastructure under seismic hazards.

🧾 Conclusion

Farzaneh Zareian exemplifies the emerging generation of civil engineers who are leveraging artificial intelligence to redefine structural safety and resilience. Her academic accomplishments, hands-on project experiences, teaching engagements, and scholarly contributions highlight a well-rounded professional profile. As she progresses toward doctoral research, her innovative mindset and strong foundation in both theory and practice make her a prime candidate for research excellence in AI-integrated earthquake engineering. With her interdisciplinary approach, she is poised to make impactful contributions to the global civil and seismic engineering community.

📚 Publication Top Notes

 Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques
📅 Year: 2024 (Nov.)
📘 Journal: Computers & Structures
🔢 Cited by: 1

 Machine learning-based seismic risk assessment of steel moment structures: a reliability analysis framework
📅 Year: In Preparation (Expected 2025)
📘 Journal: Engineering Structures
🔢 Cited by:

Dr. Zeynep Ilkilic Aytac | Artificial Intelligence | Best Researcher Award

Dr. Zeynep Ilkilic Aytac | Artificial Intelligence | Best Researcher Award

Dr Lecturer, Ondokuzmayıs University, Turkey

Dr. Zeynep Ilkilic Aytac is a dynamic and innovative academician serving as a Lecturer at Ondokuz Mayıs University, Yeşilyurt Demir Çelik Vocational School, Department of Mechatronics 🏫. With over eight years of teaching experience, she has contributed significantly to interdisciplinary research that merges mechatronics, artificial intelligence 🤖, and sustainable technologies 🌱. Her strong academic foundation and passion for practical innovation enable her to mentor engineering students while advancing the frontiers of medical diagnostics and control systems. She is widely recognized for her work in MEMS gyroscope control, CNN-based cancer detection, and emission modeling using AI.

Publication Profile

🎓 Education Background

Dr. Aytac earned her BSc, MSc, and PhD degrees in Mechatronics Engineering from Fırat University, Turkey . Her academic journey showcases a strong foundation in mechanical-electrical integration, AI-driven design, and intelligent control systems. Her doctoral research focused on developing robust control strategies for MEMS gyroscopes, laying the groundwork for her multifaceted research career.

💼 Professional Experience

Currently a Lecturer at Ondokuz Mayıs University, Dr. Aytac brings over eight years of higher education teaching and project supervision experience. She has led various academic initiatives and research projects that combine engineering principles with AI and sustainability 🌐. Her interdisciplinary projects have strengthened both academic and industry collaborations, reflecting her commitment to applied research and impactful innovation.

🏅 Awards and Honors

Dr. Aytac has gained recognition for her research through publication in reputable international journals and conference proceedings 🏆. Although specific awards are not listed, her extensive interdisciplinary contributions and active role in innovation-driven education suggest an academic career marked by peer respect and institutional acknowledgment.

🔬 Research Focus

Her research interests lie in the robust control of MEMS gyroscopes, artificial intelligence in medical imaging 🧠, and emission prediction from internal combustion systems using neural networks. She has also focused on CNN-based thyroid cancer detection, leveraging hybrid metaheuristic optimization algorithms like COOT, GWO, PSO, and CMA-ES. Her contributions uniquely combine mechatronics, control theory, deep learning, and sustainability for real-world applications across engineering and healthcare.

🧩 Conclusion

Dr. Zeynep Ilkilic Aytac exemplifies the spirit of modern engineering innovation—bridging theoretical knowledge with hands-on impact. Her work continues to shape the convergence of control systems, AI, and biomedical diagnostics, enriching both academic fields and practical industries 🔧🧬. Through dedicated teaching, collaborative research, and a commitment to sustainable technology, she inspires the next generation of engineers and scientists.

📚 Top Publications 

AI-Based Emission Prediction Using Artificial Neural Networks Optimized by CMA-ES Algorithm.
Journal: Energy Reports, Year: 2022
Cited by: 24 articles

Robust Control of MEMS Gyroscopes Using Adaptive Sliding Mode Techniques.
Journal: Microsystem Technologies, Year: 2021
Cited by: 17 articles

Deep CNN Optimization for Thyroid Cancer Detection Using GWO and PSO.
Journal: Sensors, Year: 2023
Cited by: 12 articles

Hybrid AI Approaches in Digital Pathology: A CNN-Based Study.
Journal: IEEE Access, Year: 2022
Cited by: 9 articles

 Metaheuristic Optimization in CNNs for Histopathological Image Classification.
Journal: Expert Systems with Applications, Year: 2023
Cited by: 7 articles

Seyed Abolfazl Aghili | Deep Learning | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Deep Learning | Best Review Paper Award

lecturer, iran university of science and technology, Iran

Seyed Abolfazl Aghili is a passionate civil engineer with a strong focus on construction engineering and management. With a Ph.D. in Civil Engineering from the prestigious Iran University of Science and Technology (IUST), he specializes in using artificial intelligence for enhancing the resilience of HVAC systems in hospitals. His research integrates cutting-edge technologies such as machine learning and deep learning to optimize building systems and improve decision-making in construction projects. Seyed’s dedication to his field has earned him a reputation as a driven academic and professional in the civil engineering community. 🏗️🤖

Publication Profile

ORCID

Education Background

Seyed Abolfazl Aghili completed his Ph.D. in Civil Engineering with a specialization in Construction Engineering and Management from Iran University of Science and Technology (IUST) between 2019 and 2024. His doctoral thesis focused on developing a framework to assess the long-term resilience of hospital air conditioning systems using artificial intelligence. Prior to that, he earned his M.Sc. in Civil Engineering with a focus on Construction Engineering and Management at IUST, where he investigated employee selection methods in construction firms. He also holds a B.Sc. in Civil Engineering from Isfahan University of Technology (IUT). 🎓📚

Professional Experience

Seyed Abolfazl Aghili has extensive experience in both academic research and practical applications of civil engineering, particularly in construction management. He has worked on various projects involving energy management, risk management, and resilience within the construction industry. His academic journey has seen him contribute significantly to the research community, particularly in the areas of AI in construction systems and HVAC performance. Furthermore, he has been an integral part of various conferences and publications, sharing his insights on improving construction management processes through technology. 💼🏢

Awards and Honors

Seyed Abolfazl Aghili has earned several prestigious awards throughout his academic journey. He was ranked 5th among 2200 participants in the Nationwide University Entrance Exam for the Ph.D. program in Iran in 2019. Additionally, he ranked 2nd among all construction management students at Iran University of Science and Technology during his M.Sc. studies. He was also ranked in the top 1% (220th out of 32,663) in the Nationwide University Entrance Exam for the M.Sc. program in Iran in 2013. 🏆🥇

Research Focus

Seyed’s primary research interests lie in the application of machine learning and deep learning techniques in construction engineering. His work focuses on enhancing the resilience of building systems, especially HVAC systems in healthcare settings. He also explores risk management, sustainability, lean construction, and decision-making systems for project managers. His interdisciplinary research combines civil engineering with advanced AI methodologies, driving innovations in construction management and systems optimization. 🔍💡

Conclusion

Seyed Abolfazl Aghili’s academic and professional journey reflects his commitment to advancing civil engineering through innovative solutions. His focus on integrating artificial intelligence into construction systems is helping to create smarter, more sustainable, and resilient built environments. Through his work, he continues to contribute valuable insights to both the academic world and the practical sector of construction engineering. 🌍🔧

Publications Top Notes

Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review. Journal of Buildings, 15.7 (2025).

Data-driven approach to fault detection for hospital HVAC system. Journals of Smart and Sustainable Built Environment, ahead-of-print (2024).

Feasibility Study of Using BIM in Construction Site Decision Making in Iran. International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015.

Review of digital imaging technology in safety management in the construction industry. 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran (December, 2014).

The role of insurance companies in managing the crisis after earthquake. 1st National Congress of Engineering, Construction, and Evaluation of Development Projects, May 2013.

The need for a new approach to pre-crisis and post-crisis management of earthquake. 1st National Conference on Seismology and Earthquake, February 2013.

Leyi Zhao | Computer Science | Best Researcher Award

Dr. Leyi Zhao | Computer Science | Best Researcher Award

Doctor, Beijing University of Chinese Medicine, China

Dr. Leyi Zhao is a dedicated clinical doctoral researcher in Integrative Medicine at the prestigious Beijing University of Chinese Medicine. With a keen interest in digestive tract diseases, Dr. Zhao specializes in studying precancerous lesions, tumors, and the intricate relationship between the immune environment and disease progression. Passionate about blending traditional medicine with modern computational techniques, Dr. Zhao integrates computer language and data analysis to establish innovative prognostic models, enhancing clinical applications. With multiple completed and ongoing research projects, Dr. Zhao’s contributions to the field of immunotherapy and colorectal cancer prognosis are highly impactful.

Publication Profile

ORCID

🎓 Education

Dr. Zhao is currently pursuing a doctorate in Integrative Medicine at Beijing University of Chinese Medicine, a renowned institution for traditional and modern medical research. This academic journey has equipped Dr. Zhao with a strong foundation in both traditional Chinese medical practices and cutting-edge clinical research methodologies.

💼 Experience

With extensive research experience, Dr. Zhao has led and contributed to multiple research projects focusing on colorectal cancer, immune microenvironments, and predictive modeling in oncology. Through a blend of experimental studies and computational approaches, Dr. Zhao has contributed significantly to understanding the impact of tertiary lymphoid structures (TLS) on tumor prognosis and immune response. In addition to academic research, Dr. Zhao has been involved in consultancy and industry-based projects, furthering the practical application of scientific findings.

🏆 Awards and Honors

Dr. Zhao’s research excellence has been recognized through publications in high-impact journals indexed in SCI and Scopus. The innovative work in colorectal cancer prognosis and immunotherapy has garnered citations and recognition within the scientific community. As an active contributor to the field, Dr. Zhao has been nominated for the prestigious Best Researcher Award at the Cryogenicist Global Awards.

🔬 Research Focus

Dr. Zhao’s primary research focus lies in immunotherapy for tumors, particularly in colorectal cancer. The groundbreaking research involves developing a TLS-based prognostic model that explores immune cell interactions within tumors. This model holds potential for predicting patient prognosis and treatment responsiveness, offering valuable insights into personalized medicine. Furthermore, Dr. Zhao’s interdisciplinary approach integrates network pharmacology, computational modeling, and traditional Chinese medicine, enhancing the precision and effectiveness of cancer treatments.

🔗 Publications

The Impact of Tertiary Lymphoid Structures on Tumor Prognosis and the Immune Microenvironment in Colorectal Cancer. Biomedicines, 2025; 13(3):539
🔗 DOI: 10.3390/biomedicines13030539

 Limonin ameliorates indomethacin-induced intestinal damage and ulcers through Nrf2/ARE pathway. Immun Inflamm Dis, 2023; 11(2):e787
🔗 DOI: 10.1002/iid3.787

Chinese patent herbal medicine (Shufeng Jiedu capsule) for acute upper respiratory tract infections: A systematic review and meta-analysis. Integr Med Res, 2021; 10(3):100726
🔗 DOI: 10.1016/j.imr.2021.100726

Deciphering the Mechanism of Siwu Decoction Inhibiting Liver Metastasis by Integrating Network Pharmacology and In Vivo Experimental Validation. Integr Cancer Ther, 2024; 23:15347354241236205
🔗 DOI: 10.1177/15347354241236205

🔚 Conclusion

Dr. Leyi Zhao’s research contributions are shaping the future of colorectal cancer treatment and immune microenvironment analysis. With a strong foundation in integrative medicine and a passion for computational research, Dr. Zhao continues to push the boundaries of medical science, making a profound impact on oncology and personalized medicine. As a nominee for the Best Researcher Award, Dr. Zhao’s work exemplifies innovation, dedication, and a commitment to improving patient outcomes worldwide. 🌍

Ulas Bagci | Artificial Intelligence | Outstanding Scientist Award

Assoc. Prof. Dr. Ulas Bagci | Artificial Intelligence | Outstanding Scientist Award

Assoc. Prof., Northwestern University, United States

Dr. Ulas Bagci is a distinguished researcher and tenured Associate Professor at Northwestern University, specializing in Radiology, Electrical and Computer Engineering, and Biomedical Engineering. He is also a courtesy professor at the University of Central Florida’s Center for Research in Computer Vision. As the Director of the Machine and Hybrid Intelligence Lab, Dr. Bagci focuses on the integration of artificial intelligence, deep learning, and medical imaging. His extensive research contributions include over 330 peer-reviewed articles in these domains. Previously, he was a staff scientist and lab co-manager at the National Institutes of Health (NIH), where he played a pivotal role in advancing AI-driven medical imaging applications. Dr. Bagci actively contributes to leading scientific journals, serving as an associate editor for IEEE Transactions on Medical Imaging, Medical Physics, and Medical Image Analysis.

Publication Profile

🎓 Education

Dr. Ulas Bagci holds a Ph.D. in Computer Science from the University of Nottingham (2010), where he conducted pioneering research in medical imaging. He was a Visiting Research Fellow in Radiology at the University of Pennsylvania (2008-2009), further refining his expertise in AI applications for biomedical sciences. He earned his M.Sc. in Electrical and Computer Engineering from Koç University (2005) and his B.Sc. in Electrical and Computer Engineering from Bilkent University (2003).

💼 Experience

Dr. Bagci has built an impressive academic and research career across top institutions. Since 2021, he has been an Associate Professor at Northwestern University, where he leads research in AI-driven medical imaging. Before that, he served as an Assistant Professor in Computer Science at the University of Central Florida (2014-2020), fostering innovation in deep learning for radiology. From 2010 to 2014, he was a Staff Scientist and Lab Manager at the National Institutes of Health (NIH), playing a key role in infectious disease imaging and AI applications in radiology.

🏅 Awards and Honors

Dr. Bagci has received numerous recognitions for his outstanding contributions to artificial intelligence and medical imaging. He has secured multiple NIH grants (R01, U01, R15, R21, R03) as a Principal Investigator and is a steering committee member for the NIH Artificial Intelligence Resource (AIR). Additionally, he has been honored with best paper and reviewer awards in top-tier AI and medical imaging conferences such as MICCAI and IEEE Medical Imaging.

🔬 Research Focus

Dr. Bagci’s research revolves around artificial intelligence, deep learning, radiology, and computer vision. His work has significantly impacted medical imaging applications, including MRI, CT scans, nuclear medicine imaging, and disease diagnosis. He has contributed extensively to federated learning, probabilistic modeling, and AI-powered decision-making in healthcare. His recent studies include advancements in brain tumor segmentation, bias field correction in MRI, and AI-driven road network prediction.

🔚 Conclusion

Dr. Ulas Bagci is a leading expert in AI-powered medical imaging, consistently pushing the boundaries of deep learning, radiology, and computer vision. His impactful contributions in academia and research have earned him global recognition. With a strong presence in prestigious institutions, his pioneering work continues to shape the future of AI in healthcare. 🚀

📚 Publications

Evidential Federated Learning for Skin Lesion Image Classification (2025) – Published in a book chapter DOI: 10.1007/978-3-031-78110-0_23 📖

Paradoxical Response to Neoadjuvant Therapy in Undifferentiated Pleomorphic Sarcoma (2025) – Published in Cancers DOI: 10.3390/cancers17050830 🏥

Foundational Artificial Intelligence Models and Modern Medical Practice (2025) – Published in BJR | Artificial Intelligence DOI: 10.1093/bjrai/ubae018 🧠

A Probabilistic Hadamard U-Net for MRI Bias Field Correction (2024) – Published in arXiv arXiv:2403.05024 🖥️

AI-Powered Road Network Prediction with Fused Low-Resolution Satellite Imagery and GPS Trajectory (2024) – Published in Earth Science Informatics 🌍

Beyond Self-Attention: Deformable Large Kernel Attention for Medical Image Segmentation (2024) – Presented at the IEEE/CVF Winter Conference on Applications of Computer Vision 🤖

Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation  (2024) – Published in arXiv arXiv:2405.18383 🏥