Dr. Saikat Gochhait | Artificial Intelligence | Best Researcher Award

Dr. Saikat Gochhait | Artificial Intelligence | Best Researcher Award

Assistant Professor, Symbiosis International (Deemed to be University), India

Dr. Saikat Gochhait is an accomplished Indian academic, researcher, and innovator, currently serving as an Assistant Professor at Symbiosis International Deemed University, Pune. With a strong background in management, information technology, and behavioral sciences, he also contributes as a Research Team Member at the Symbiosis Centre for Behavioral Sciences and Adjunct Faculty at the Neuroscience Research Institute, Samara State Medical University, Russia. He is a prolific inventor with several published patents and has been recognized for his contributions to interdisciplinary research in artificial intelligence, neuroscience, and optimization algorithms.

Publication Profile

🎓 Education Background

Dr. Gochhait earned his Doctor of Philosophy (Ph.D.) in Management from Sambalpur University in 2014 🧠, a Master’s in Business Management from the same university in 2009 📊, and a Master’s in Information Technology from Sikkim Manipal University in 2017 💻. His diverse academic training has laid a multidisciplinary foundation that supports his cross-functional research across business, IT, and neuroscience domains.

💼 Professional Experience

With over two decades of experience spanning academia and industry, Dr. Gochhait has held key roles such as Assistant Professor at ASBM University, Khalikote University, and HOD at Sambhram Institute of Technology. His industry experience includes strategic roles at IFGL Refractories Ltd. and Tata Krosaki Refractories Ltd. Currently, at Symbiosis International University, he mentors postgraduate and doctoral students, manages AI-centric research projects, and continues collaborative ventures with prestigious institutions including IIT Roorkee and international universities 🌏.

🏆 Awards and Honors

Dr. Gochhait has been honored as a Senior Member of IEEE in 2019 and recognized by the Alpha Network of the Federation of European Neuroscience Societies in 2024 🌟. His academic excellence has earned him international research fellowships from leading institutions, including the Natural Sciences and Engineering Research Council of Canada, Samara State Medical University (Russia), National Dong Hwa University (Taiwan), and the University of Deusto (Spain), with total grants exceeding USD 20,000 💰.

🔬 Research Focus

Dr. Gochhait’s research is rooted in artificial intelligence, behavioral science, energy prediction, bio-inspired optimization algorithms, and neuroscience-enhanced technology applications 🧬. He is a principal investigator of high-impact government-funded projects such as AI-based load forecasting for dispatch centers and BCI-integrated neurofeedback games. His innovations also extend to smart agriculture and transport systems, reflecting his dedication to societal improvement through technology 🤖🌱.

✅ Conclusion

Blending visionary academic pursuit with innovative problem-solving, Dr. Saikat Gochhait continues to drive global research collaborations, mentor emerging scholars, and contribute meaningful technological solutions to real-world challenges 📚🌍. His evolving body of work bridges disciplines, industries, and nations, making him a respected figure in AI, management, and neuroscience research.

📚 Top Publications

Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
Biomimetics, 2024Indexed in Scopus/WoS
Cited by: 12 articles

Dollmaker Optimization Algorithm: A Novel Human-Inspired Optimizer for Solving Optimization Problems
International Journal of Intelligent Engineering and Systems, 2024Indexed in Scopus
Cited by: 9 articles

Addax Optimization Algorithm: A Novel Nature-Inspired Optimizer for Solving Engineering Applications
International Journal of Intelligent Engineering and Systems, 2024Indexed in Scopus
Cited by: 7 articles

Enhancing Household Energy Consumption Predictions Through Explainable AI Frameworks
IEEE Access, 2024 – Indexed in Scopus/WoS
Cited by: 15 articles

URL Shortener for Web Consumption: An Extensive and Impressive Security Algorithm
 Indonesian Journal of Electrical Engineering and Computer Science, 2024Indexed in Scopus
 Cited by: 6 articles

Dr. Uddalak Mitra | Machine learning | Best Researcher Award

Dr. Uddalak Mitra | Machine learning | Best Researcher Award

Assistant Professor, JIS College of Engineering, India

Dr. Uddalak Mitra is an esteemed Assistant Professor at JIS College of Engineering, specializing in bioinformatics, machine learning, and deep learning 🧬🤖. With a strong academic foundation and a passion for research, he has significantly contributed to the intersection of computational intelligence and biological sciences. His expertise lies in decoding DNA, RNA, and protein sequences using cutting-edge AI techniques, paving the way for advancements in healthcare and genomics. Dr. Mitra’s work seamlessly blends theoretical knowledge with real-world applications, making impactful strides in both academia and industry.

Publication Profile

Google Scholar

🎓 Education:

Dr. Mitra has built a solid academic background in computational sciences, equipping himself with the expertise required to address complex biological challenges. His educational journey has provided him with the technical prowess to integrate artificial intelligence into biomedical research.

💼 Experience:

As an Assistant Professor at JIS College of Engineering, Dr. Mitra actively engages in research and mentoring, shaping the next generation of scientists. His work focuses on applying machine learning models to analyze biological data, improving early disease detection methodologies. Additionally, he has authored several research papers and contributed to the academic community through his innovative studies.

🏆 Awards and Honors:

Dr. Mitra has made commendable contributions to scientific research, earning recognition for his published works. He holds 9 patents, showcasing his dedication to innovation. His memberships in esteemed organizations like IFERP and ISTE reflect his commitment to professional development and research excellence.

🔬 Research Focus:

His research primarily revolves around bioinformatics, machine learning, and deep learning. He explores information-theoretic tools for biological sequence analysis, integrating artificial intelligence to derive meaningful insights from genomic data. His recent studies focus on clinical applications of AI, particularly in disease diagnosis and personalized medicine.

🔍 Conclusion:

Dr. Uddalak Mitra is a pioneering researcher dedicated to bridging the gap between bioinformatics and artificial intelligence. His contributions to genomic research, coupled with his expertise in AI-driven disease diagnosis, make him a valuable asset to the scientific community. With a strong foundation in computational biology, he continues to push the boundaries of research, striving for innovations that benefit both medicine and technology.

📚 Publications:

Leveraging AI and Machine Learning for Next-Generation Clinical Decision Support Systems (CDSS) – Published in AI-Driven Innovation in Healthcare Data Analytics, 2025.

Cognitive Handwriting Insights for Alzheimer’s Diagnosis: A Hybrid FrameworkInformation, 2025

Integrated System for Disease Detection Using Semiconductor-Based Gas Sensors and AI/MLIN Patent A61B0005080000, 2025

Significance of AI/ML Wearable Technologies for Education and TeachingWearable Devices and Smart Technology for Educational Teaching Assistance, 2025

Integrating AI/ML With Wearable Devices for Monitoring Student Mental HealthWearable Devices and Smart Technology for Educational Teaching Assistance, 2025

The Evolution of Entrepreneurship in the Age of AIAdvanced Intelligence Systems and Innovation in Entrepreneurship, 2024

A Novel Algorithm for Genomic STR Mining: Application to Phylogeny Reconstruction and Taxa IdentificationInternational Journal of Bioinformatics Research and Applications, 2024

Ulas Bagci | Artificial Intelligence | Outstanding Scientist Award

Assoc. Prof. Dr. Ulas Bagci | Artificial Intelligence | Outstanding Scientist Award

Assoc. Prof., Northwestern University, United States

Dr. Ulas Bagci is a distinguished researcher and tenured Associate Professor at Northwestern University, specializing in Radiology, Electrical and Computer Engineering, and Biomedical Engineering. He is also a courtesy professor at the University of Central Florida’s Center for Research in Computer Vision. As the Director of the Machine and Hybrid Intelligence Lab, Dr. Bagci focuses on the integration of artificial intelligence, deep learning, and medical imaging. His extensive research contributions include over 330 peer-reviewed articles in these domains. Previously, he was a staff scientist and lab co-manager at the National Institutes of Health (NIH), where he played a pivotal role in advancing AI-driven medical imaging applications. Dr. Bagci actively contributes to leading scientific journals, serving as an associate editor for IEEE Transactions on Medical Imaging, Medical Physics, and Medical Image Analysis.

Publication Profile

🎓 Education

Dr. Ulas Bagci holds a Ph.D. in Computer Science from the University of Nottingham (2010), where he conducted pioneering research in medical imaging. He was a Visiting Research Fellow in Radiology at the University of Pennsylvania (2008-2009), further refining his expertise in AI applications for biomedical sciences. He earned his M.Sc. in Electrical and Computer Engineering from Koç University (2005) and his B.Sc. in Electrical and Computer Engineering from Bilkent University (2003).

💼 Experience

Dr. Bagci has built an impressive academic and research career across top institutions. Since 2021, he has been an Associate Professor at Northwestern University, where he leads research in AI-driven medical imaging. Before that, he served as an Assistant Professor in Computer Science at the University of Central Florida (2014-2020), fostering innovation in deep learning for radiology. From 2010 to 2014, he was a Staff Scientist and Lab Manager at the National Institutes of Health (NIH), playing a key role in infectious disease imaging and AI applications in radiology.

🏅 Awards and Honors

Dr. Bagci has received numerous recognitions for his outstanding contributions to artificial intelligence and medical imaging. He has secured multiple NIH grants (R01, U01, R15, R21, R03) as a Principal Investigator and is a steering committee member for the NIH Artificial Intelligence Resource (AIR). Additionally, he has been honored with best paper and reviewer awards in top-tier AI and medical imaging conferences such as MICCAI and IEEE Medical Imaging.

🔬 Research Focus

Dr. Bagci’s research revolves around artificial intelligence, deep learning, radiology, and computer vision. His work has significantly impacted medical imaging applications, including MRI, CT scans, nuclear medicine imaging, and disease diagnosis. He has contributed extensively to federated learning, probabilistic modeling, and AI-powered decision-making in healthcare. His recent studies include advancements in brain tumor segmentation, bias field correction in MRI, and AI-driven road network prediction.

🔚 Conclusion

Dr. Ulas Bagci is a leading expert in AI-powered medical imaging, consistently pushing the boundaries of deep learning, radiology, and computer vision. His impactful contributions in academia and research have earned him global recognition. With a strong presence in prestigious institutions, his pioneering work continues to shape the future of AI in healthcare. 🚀

📚 Publications

Evidential Federated Learning for Skin Lesion Image Classification (2025) – Published in a book chapter DOI: 10.1007/978-3-031-78110-0_23 📖

Paradoxical Response to Neoadjuvant Therapy in Undifferentiated Pleomorphic Sarcoma (2025) – Published in Cancers DOI: 10.3390/cancers17050830 🏥

Foundational Artificial Intelligence Models and Modern Medical Practice (2025) – Published in BJR | Artificial Intelligence DOI: 10.1093/bjrai/ubae018 🧠

A Probabilistic Hadamard U-Net for MRI Bias Field Correction (2024) – Published in arXiv arXiv:2403.05024 🖥️

AI-Powered Road Network Prediction with Fused Low-Resolution Satellite Imagery and GPS Trajectory (2024) – Published in Earth Science Informatics 🌍

Beyond Self-Attention: Deformable Large Kernel Attention for Medical Image Segmentation (2024) – Presented at the IEEE/CVF Winter Conference on Applications of Computer Vision 🤖

Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation  (2024) – Published in arXiv arXiv:2405.18383 🏥

 

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

UNAD, Colombia

Dr. Edna Rocío Bernal Monroy is an accomplished computer scientist and researcher specializing in informatics, machine learning, and healthcare technologies. With a strong academic background and diverse international experience, she has contributed significantly to health informatics, wearable sensors, and intelligent systems. Dr. Bernal Monroy has worked across multiple institutions in Colombia, France, and Spain, engaging in teaching, research, and project management. Her work in artificial intelligence (AI) for healthcare has earned her prestigious awards and recognition in the global scientific community.

Publication Profile

🎓 Education

Dr. Bernal Monroy holds a Ph.D. in Information & Communication Technology from the University of Jaén, Spain (2017–2021), focusing on informatics and AI applications in healthcare. She completed a Master of Engineering in Information Systems and Networks at Claude Bernard Lyon 1 University, France (2010–2012). Additionally, she pursued a Specialization in Management of Innovative Health Projects at INCAE Business School, Nicaragua (2016–2017) and earned a Bachelor of Engineering in Computer Science & Technology from the Pedagogical and Technological University of Colombia (2005–2010).

💼 Experience

Dr. Bernal Monroy has held teaching and research roles in various universities. She served as a Full-Time Teacher at the National Open and Distance University, Bogotá (2014–2020) and worked at the San Gil University Foundation (2013–2014) as a Systems Engineering Lecturer. She was also a faculty member at the Pedagogical and Technological University of Colombia (2014–2015). Additionally, she gained international experience as a Project Manager in Informatics at CALYDIAL, France (2011–2012).

🏆 Awards and Honors

Dr. Bernal Monroy has received several prestigious distinctions for her research contributions. She was awarded the Google LARA 2018 Google Research Award for Latin America for her doctoral project on innovation. She also served as a European Project Researcher for REMIND – H2020 – MSCA-RISE-2016 under the European Union’s research initiative. Additionally, she received the CAHI Research Fellowship from the Central American Healthcare Initiative (CAHI) in 2016 for her contributions to healthcare technology and informatics.

🔬 Research Focus

Dr. Bernal Monroy’s research interests lie at the intersection of AI, machine learning, healthcare informatics, and wearable technologies. She specializes in intelligent monitoring systems for healthcare applications, particularly in preventing pressure ulcers through wearable inertial sensors and using AI-driven analytics for healthcare improvements. Her work also extends to human activity recognition, telemedicine, and IoT solutions for health applications.

🏁 Conclusion

Dr. Edna Rocío Bernal Monroy is a leading researcher in AI-driven healthcare solutions with extensive experience in informatics, machine learning, and wearable technologies. Her pioneering research has contributed significantly to intelligent monitoring systems, earning her global recognition and prestigious awards. Through her academic contributions, research projects, and international collaborations, she continues to drive innovation in healthcare informatics and AI applications. 🚀

📚 Publications

Implementation of Machine Learning Techniques to Identify Patterns that Affect the Social Determinants of the Municipality of Tumaco – Nariño (2024) – Published in Encuentro Internacional de Educación en Ingeniería, this paper focuses on using AI to analyze social determinants of health.

Fuzzy Monitoring of In-Bed Postural Changes for the Prevention of Pressure Ulcers Using Inertial Sensors Attached to Clothing (2020) – Published in the Journal of Biomedical Informatics, this research has been cited 31 times and explores AI-driven healthcare monitoring solutions.

Intelligent System for the Prevention of Pressure Ulcers by Monitoring Postural Changes with Wearable Inertial Sensors (2019) – Published in Proceedings, this work highlights wearable sensor-based intelligent systems for healthcare and has been cited 11 times.

UJA Human Activity Recognition Multi-Occupancy Dataset (2021) – A dataset publication in collaboration with other researchers, cited 3 times.

Finite Element Method for Characterizing Microstrip Antennas with Different Substrates for High-Temperature Sensors (2017) – Explores sensor technologies for high-temperature environments.

Estudio de Apoyo para la Implementación de un Sistema de Telemedicina en Lyon, Francia (2013) – Discusses telemedicine systems and their applications in France.

Mr. André Guimarães | Computer Science | Best Researcher Award

Mr. André Guimarães | Computer Science | Best Researcher Award

Researcher, University of Beira Interior, Portugal

Andre Guimarães is a dedicated researcher and educator in the fields of Engineering Sciences, Industrial Engineering, and Management. With a strong academic background, he has contributed significantly to various research projects related to Industry 4.0 and digital transformation. He currently holds research positions at the University of Beira Interior and the Polytechnic Institute of Viseu, Portugal. Alongside his academic work, Andre has accumulated practical experience in industrial environments, particularly in production management and technical consulting, where he focuses on quality management, lean methodologies, and engineering innovations. He is also a passionate educator, teaching engineering and management-related courses at the higher education level. 📚🔬

Publication Profile

ORCID

Education:

Andre’s educational journey includes a Master’s degree in Mechanical Engineering and Industrial Management from the Polytechnic Institute of Viseu. He is currently pursuing a PhD in Industrial Engineering and Management at the University of Beira Interior. Additionally, Andre holds several postgraduate qualifications, including a specialization in Industry 4.0 and Digital Transformation from the Polytechnic Institute of Porto. His training also includes certifications in quality management, Six Sigma, lean manufacturing, and other engineering disciplines. 🎓📖

Experience:

Andre’s professional career spans both academia and industry. He has worked as a researcher at the University of Beira Interior and the Polytechnic Institute of Viseu, contributing to cutting-edge research in mechanical and industrial engineering. Additionally, Andre has extensive industrial experience, having served as the Production Manager at IPROM – Products Industry Metallics Ltd, where he oversaw production processes and managed technical operations. As a consultant and facilitator at the Welding and Quality Institute, Andre applies his expertise in quality management systems and continuous improvement. 🏭⚙️

Awards and Honors:

Andre Guimarães has been recognized for his contributions to both research and industry. He is a full member of the Order of Engineers in Portugal and a fellow at FCT Research. His work has been acknowledged through various academic and industry accolades, cementing his reputation as a skilled professional and educator in his field. 🏅🌟

Research Focus:

Andre’s research interests are deeply rooted in Industry 4.0 technologies, digital transformation, lean management, and quality systems in industrial engineering. His research aims to bridge the gap between theoretical frameworks and practical applications in engineering, with a focus on improving production efficiency, implementing digital technologies, and optimizing management processes in industrial environments. His recent projects explore advanced methodologies in electromechatronics and systems research. 🔍📊

Conclusion:

With a rich academic background and a wealth of practical experience, Andre Guimarães stands at the intersection of research and industry, contributing to the evolution of engineering practices. His work, driven by a passion for innovation and education, continues to shape the future of industrial engineering and management in Portugal and beyond. Andre’s ongoing commitment to advancing the field through both research and practical applications makes him a valuable asset to the academic and industrial communities. 🚀🌍

Publications:

The influence of consumer, manager, and investor sentiment on US stock market returnsInvestment Management and Financial Innovations

Effects of Lean Tools and Industry 4.0 technology on productivity: An empirical studyJournal of Industrial Information Integration

Método Delphi modificado para abordar a transformação digital na gestão de ativosRevista de Ativos de Engenharia

Lean philosophy and Value Engineering methodologies. Their relations and synergy using Bert a natural language processing modelCongrEGA 2024 – Sustainable and Digital Innovation in Engineering Asset Management

Modificação do Método Delphi para Aplicação num Questionário sobre a Transformação Digital na Gestão de AtivosCongrEGA 2024 – Sustainable and Digital Innovation in Engineering Asset Management

Overview of the use of data assets in the context of Portuguese companies: Comparison between SMEs and large companiesCongrEGA 2024 – Sustainable and Digital Innovation in Engineering Asset Management

Comparative analysis of welding processes using different thermoplasticsInternational Journal of Integrated Engineering

Yunhyung LEE | Computer science| Best Researcher Award

Prof. Dr. Yunhyung LEE | Computer Science | Best Researcher Award

Professor, Korea Institute of Maritime and Fisheries Technology, South Korea

Dr. Yunhyung Lee is a distinguished professor at the Korea Institute of Maritime and Fisheries Technology and an adjunct professor at Korea Maritime and Ocean University. With an academic journey spanning nearly two decades, Dr. Lee has made significant contributions to marine systems engineering, control systems, and maritime research. A prolific researcher and academician, he is known for his innovative approaches in marine electric systems, fuzzy control, and genetic algorithms. His commitment to fostering maritime education and cutting-edge research has earned him several accolades and a global reputation in his field. 🌐✨

Publication Profile

ORCID

Education 🎓

Dr. Lee graduated summa cum laude with a Bachelor’s degree in Marine System Engineering from Korea Maritime and Ocean University in 2002. He further earned his Master’s degree in 2004 and completed his Ph.D. in Mechatronics Engineering in 2007. His academic excellence is reflected in multiple awards, including the President’s Award for graduating with the highest honors. 🏆📚

Professional Experience 💼

Dr. Lee began his academic career as a part-time lecturer at Korea Maritime and Ocean University and Youngsan University. From 2008 to 2014, he served as a professor at the Korea Port Training Institute before joining the Korea Institute of Maritime and Fisheries Technology in 2014. Simultaneously, he has been an adjunct professor at Korea Maritime and Ocean University since 2015. His practical experience includes spearheading innovative research projects and consulting for industry collaborations. ⚙️🛳️

Awards and Honors 🏅

Dr. Lee’s outstanding achievements have been recognized through numerous awards, including the Albert Nelson Marquis Lifetime Achievement Award (2018) and the Young Researcher Award from the Korean Society of Marine Engineering (2015). He has also been honored for his contributions to education and research with awards such as the Best Paper Award by the Korean Federation of Science and Technology Societies (2006) and the Citation for Excellence in Lecturing by Korea Maritime and Ocean University (2008). 🌟🎖️

Research Focus 🔬

Dr. Lee’s research encompasses control engineering, marine electric systems, genetic algorithms, fuzzy control, and PID control. His studies aim to enhance the safety, efficiency, and reliability of marine propulsion systems and other maritime technologies. Through numerous research projects and innovative solutions, he has significantly advanced the field of marine and fisheries technology. 🌊⚡

Conclusion 🌟

Dr. Yunhyung Lee’s exceptional career reflects his dedication to advancing marine and maritime technology through research, education, and industry collaboration. His passion for innovation and his unwavering commitment to excellence make him a leading figure in his field. 🌏✨

Publications 📚

Application of Real-Coded Genetic Algorithm–PID Cascade Speed Controller to Marine Gas Turbine Engine Based on Sensitivity Function Analysis
Mathematics, 2025 – Cited by: 5

Development of Hull Care for Warships Based on a Manned-Unmanned Hybrid System: Focusing on the Underwater Hull Plate
Journal of the KNST, 2024 – Cited by: 3

Modeling and Parameter Estimation of a 2DOF Ball Balancer System
Journal of the Korea Academia-Industrial Cooperation Society, 2024 – Cited by: 4

Ground-Fault Recognition in Low-Voltage Ships Based on Variation Analysis of Phase-to-Ground Voltage and Neutral-Point Voltage
IEEE Access, 2024 – Cited by: 8

Speed Control for Low Voltage Propulsion Electric Motor of Green Ship through DTC Application
Journal of the Korea Academia-Industrial Cooperation Society, 2023 – Cited by: 6

RCGA-PID Controller Based on ITAE for Gas Turbine Engine in the Marine Field
The Journal of Fisheries and Marine Sciences Education, 2023 – Cited by: 3

PID Controller Design Based on Direct Synthesis for Set Point Speed Control of Gas Turbine Engine in Warships
Journal of the Korean Society of Fisheries Technology, 2023 – Cited by: 2

Study on Speed Control of LM-2500 Engine Using IMC-LPID Controller
Journal of the Korea Academia-Industrial Cooperation Society, 2022 – Cited by: 7

A Study on the Training Contents of AC DRIVE of the HV Electrical Propulsion Ships
Journal of Fisheries and Marine Sciences Education, 2021 – Cited by: 4