Sarah Marzen | Data Science | Best Researcher Award

Prof. Sarah Marzen | Data Science | Best Researcher Award

Prof. Sarah Marzen – Professor | Claremont McKenna College | United States

Sarah E. Marzen is a highly accomplished physicist and interdisciplinary researcher based at the W. M. Keck Science Department, serving Pitzer, Scripps, and Claremont McKenna Colleges. Her work bridges physics, biology, and artificial intelligence, with a central focus on sensory prediction, information theory, and reinforcement learning. A frequent speaker at global conferences, Marzen is known for her analytical insight and leadership in computational neuroscience. She has held prestigious fellowships, organized influential workshops, and served on multiple editorial boards. Her dynamic academic contributions have garnered recognition across the scientific community, cementing her position as a leader in theoretical and applied information sciences.

Publication Profile

Scopus

Google Scholar

Education Background

Sarah Marzen earned her Ph.D. in Physics from the University of California, Berkeley, where her dissertation explored bio-inspired problems in rate-distortion theory under the mentorship of Professor Michael R. DeWeese. Prior to that, she completed her B.S. in Physics at the California Institute of Technology. Her early academic promise was recognized through numerous merit scholarships, including the Caltech Axline Award. She further enhanced her interdisciplinary understanding through participation in prominent summer schools, such as the Santa Fe Institute Complex Systems School and the Machine Learning Summer School, setting a strong foundation for her later research in theoretical and computational neuroscience.

Professional Experience

Currently an Associate Professor of Physics at the W. M. Keck Science Department, Sarah Marzen has held academic and research positions at some of the most prestigious institutions. Following her Ph.D., she was a postdoctoral fellow at MIT, collaborating with renowned scholars such as Nikta Fakhri and Jeremy England. She has also served as a facilitator and mentor at MIT and a research assistant at Caltech and the MITRE Corporation. Beyond academia, she advises a stealth startup focused on human cognition. Through her career, Marzen has balanced research, teaching, and mentorship while contributing significantly to interdisciplinary data science initiatives and diversity committees.

Awards and Honors

Sarah Marzen has been recognized with numerous accolades, including the Mary W. Johnson Faculty Scholarship Award and the prestigious National Science Foundation Graduate Research Fellowship. She was a finalist for the SIAM-MGB Early Career Fellowship and has received travel grants from OCNS, Entropy, and ILIAD. Her excellence in research and academic service is reflected in her appointments to editorial boards, guest editorships of top-tier journals, and organizing roles for workshops and symposia. Early in her academic journey, she was an Intel Science Talent Search Finalist and a U.S. Physics Team finalist, laying the groundwork for a distinguished scientific career.

Research Focus

Marzen’s research centers on the intersection of information theory, sensory prediction, reinforcement learning, and biological systems. She investigates how both natural and artificial systems use limited resources to make accurate predictions in dynamic environments. Her work incorporates resource-rationality, complexity theory, and dynamical systems to understand neural coding and learning processes. Marzen also explores the mathematical structures underlying neural computation and opinion dynamics, applying her expertise across machine learning, computational neuroscience, and cognitive science. Her contributions have led to breakthroughs in understanding neural memory, adaptive learning, and predictive representations in both biological and engineered systems.

Conclusion

Sarah E. Marzen exemplifies the ideal of a multidisciplinary scientist who blends deep theoretical insight with practical relevance. From her early accolades in physics to her leadership in computational neuroscience and information theory, she has contributed meaningfully to several scientific domains. Her commitment to teaching, diversity, and mentorship further enhances her role as a scholar and educator. With an impressive portfolio of publications, grants, and collaborations, Marzen continues to push the boundaries of how information and computation intersect in both biological and artificial systems, positioning her as a thought leader in contemporary science.

Top  Publications

Statistical mechanics of Monod–Wyman–Changeux (MWC) models
Published Year: 2013
Citation: 128

On the role of theory and modeling in neuroscience
Published Year: 2023
Citation: 100

The evolution of lossy compression
Published Year: 2017
Citation: 65

Informational and causal architecture of discrete-time renewal processes
Published Year: 2015
Citation: 46

Predictive rate-distortion for infinite-order Markov processes
Published Year: 2016
Citation: 45

Zhe PENG | Data Analytics | Best Researcher Award

Prof. Zhe PENG | Analytics | Best Researcher Award

Assistant Professor, The Hong Kong Polytechnic University, Hong Kong

Dr. Zhe Peng  is a dedicated Research Assistant Professor at the Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University. With a strong background in computer science and engineering, he specializes in intelligent supply chains, AI for manufacturing, and blockchain technologies. His contributions to blockchain, federated learning, and decentralized identity systems have earned him global recognition. With extensive academic and industry experience, Dr. Peng has made a significant impact on cutting-edge technological advancements.

Publication Profile

🎓 Education

Dr. Peng holds a Ph.D. in Computer Science from The Hong Kong Polytechnic University (2018), under the supervision of Prof. Bin Xiao (IEEE Fellow). He earned his M.E. in Information and Communication Engineering from the University of Science and Technology of China (2013) and a B.E. in Communication Engineering from Northwestern Polytechnical University (2010). His academic journey reflects his deep expertise in computing, communication, and AI-driven systems.

💼 Experience

Dr. Peng has held multiple research and industry positions. He is currently a Research Assistant Professor at The Hong Kong Polytechnic University. Previously, he served as a Research Assistant Professor at Hong Kong Baptist University (2020-2023) and as an R&D Manager at the Blockchain and FinTech Lab. In the industry, he worked as the Blockchain Technical Director at SF Technology in Shenzhen (2018-2019). Additionally, he was a Visiting Scholar at Stony Brook University, USA, working under Distinguished Prof. Yuanyuan Yang (IEEE Fellow).

🏆 Awards and Honors

Dr. Peng has received several prestigious awards, including the World’s Top 2% Scientists by Stanford University (2024) and the Award for High SFQ Score at PolyU ISE (2024). He was recognized with an ESI Highly Cited Paper (2023) and received the DASFAA-MUST Best Paper Award (2021). His work was also nominated for THE Awards Asia – Technological or Digital Innovation of the Year (2021). His numerous accolades highlight his contributions to academia, research, and technological innovation.

🔬 Research Focus

Dr. Peng’s research revolves around intelligent supply chains, AI-driven manufacturing, blockchain applications, and autonomous systems. His work on verifiable decentralized identity management, privacy-aware federated learning, and blockchain security has set new benchmarks in these fields. He continues to explore innovative solutions to improve efficiency, transparency, and security in digital ecosystems.

🔚 Conclusion

Dr. Zhe Peng is a visionary researcher at the intersection of AI, blockchain, and smart logistics. His groundbreaking research, academic excellence, and industry experience make him a leading expert in his field. Through his contributions to intelligent systems, federated learning, and blockchain security, he continues to shape the future of technological innovation. 🚀

🔗 Publications 

Lightweight Multimodal Defect Detection at the Edge via Cross-Modal Distillation

VDID: Blockchain-Enabled Verifiable Decentralized Identity Management for Web 3.0 

SymmeProof: Compact Zero-Knowledge Argument for Blockchain Confidential Transactions 

The Impact of Life Cycle Assessment Database Selection on Embodied Carbon Estimation of Buildings 

EPAR: An Efficient and Privacy-Aware Augmented Reality Framework for Indoor Location-Based Services

VFChain: Enabling Verifiable and Auditable Federated Learning via Blockchain Systems 

VQL: Efficient and Verifiable Cloud Query Services for Blockchain Systems 

Chunling Bao | Data Science | Best Researcher Award

Ms. Chunling Bao | Data Science | Best Researcher Award

PhD Candidates, Shanghai Normal University, China

Chunling Bao is a dedicated Ph.D. candidate at Shanghai Normal University, specializing in environmental and geographical sciences 🌍. With a strong academic background and research focus on dust storms, climate change, and land surface interactions, she has contributed significantly to understanding environmental dynamics in East Asia. Her scholarly work is widely recognized, with multiple publications in high-impact journals 📚.

Publication Profile

ORCID

🎓 Education

Chunling Bao embarked on her academic journey at Inner Mongolia Normal University, earning her undergraduate degree (2014-2018) and later obtaining her master’s degree (2018-2021) 🎓. She expanded her expertise through an exchange program at the Center for Agricultural Resources Research, Chinese Academy of Sciences (2023), before pursuing her doctoral studies at Shanghai Normal University (2023-present) 🏫.

💼 Experience

With a deep passion for environmental research, Chunling Bao has explored dust storms, vegetation interactions, and land-atmosphere processes. Her experience includes field studies, satellite data analysis, and interdisciplinary research collaborations 🌪️. Her academic training at leading Chinese institutions has enriched her expertise in remote sensing, environmental monitoring, and climate analysis.

🏆 Awards and Honors

Chunling Bao has been recognized for her outstanding research contributions in environmental science 🏅. Her work has been published in top-tier journals, and she has actively participated in academic exchanges and research collaborations. Her efforts in studying dust storm dynamics have positioned her as an emerging scholar in the field 🌿.

🔬 Research Focus

Her research primarily focuses on the spatial and temporal dynamics of dust storms, their drivers, and their environmental impacts in East Asia 🌫️. Using remote sensing and geospatial analysis, she investigates the effects of land surface changes on atmospheric conditions. Her studies contribute to climate adaptation strategies and sustainable environmental management.

📌 Conclusion

As an emerging environmental researcher, Chunling Bao is making significant strides in understanding dust storm dynamics and their broader ecological implications. With her growing academic contributions and research excellence, she continues to shape the field of environmental science and atmospheric studies 🌏.

📚 Publications

Dust Intensity Across Vegetation Types in Mongolia: Drivers and Trends. Remote Sensing, 17(3), 410. 🔗 DOI

Analyses of the Dust Storm Sources, Affected Areas, and Moving Paths in Mongolia and China in Early Spring. Remote Sensing, 14, 3661. 🔗 DOI

Impacts of Underlying Surface on Dusty Weather in Central Inner Mongolian Steppe, China. Earth and Space Science, 8, e2021EA001672. 🔗 DOI

Regional Spatial and Temporal Variation Characteristics of Dust in East Asia. Geographical Research, 40(11), 3002-3015. 🔗 DOI (in Chinese)

Analysis of the Movement Path of Dust Storms Affecting Alxa. Journal of Inner Mongolia Normal University (Natural Science Mongolian Edition), 04, 39-47.

Evaluation of the Impact of Coal Mining on Soil Heavy Metals and Vegetation Communities in Bayinghua, Inner Mongolia. Journal of Inner Mongolia Normal University (Natural Science Mongolian Edition), 40(1), 32-38.

 

 

Cyruss Tsurgeon | Data Visualization | Bioinformatics Contribution Award

Mr. Cyruss Tsurgeon | Data Visualization | Bioinformatics Contribution Award

PhD Student, Meharry Medical College, United States

🌟 Cyruss Tsurgeon is a dedicated Biomedical Data Science graduate student and seasoned clinical scientist based in Rancho Cucamonga, CA. With a wealth of experience in diagnostic data interpretation and clinical medicine, Cyruss combines his technical acumen with a passion for advancing healthcare through data science. His impressive journey spans decades of leadership, research, and healthcare administration, making him a valuable contributor to the scientific and medical communities.

Publication Profile

Education

🎓 Cyruss holds an MS in Biomedical Data Science (2022–2023) from Meharry Medical College, Nashville, TN. He also earned an MS in Molecular Biotechnology (2000–2003) from Johns Hopkins University and dual BS degrees in Biochemistry and Microbiology (1987–1992) from the University of Washington, Seattle. Additionally, he has completed certifications such as the Google Data Analytics Professional Certificate and the Executive Data Science Specialization from Coursera, equipping him with expertise in data analytics, R programming, and visualization tools.

Experience

💼 Cyruss boasts a diverse professional background, including over a decade as a Clinical Laboratory Manager/Scientific Director in the US Army, where he led medical laboratories and implemented protocols for risk management and quality improvement. His tenure as a Biologist/Research Scientist at the NIH involved DNA sequencing and genome analysis. Earlier in his career, he served as a Healthcare Administrator in the US Army and a Research Associate at prominent institutions, contributing to molecular biology and comparative genomic studies.

Awards and Honors

🏆 Cyruss has achieved prestigious laboratory certifications, including DLM(ASCP)CM and MLS(ASCP)CM, showcasing his expertise in laboratory medicine. His contributions to clinical data science and diagnostics have been recognized through impactful research and publications in leading journals like Nature and Genome Research.

Research Focus

🔬 Cyruss’s research interests lie at the intersection of biomedical data science, molecular biology, and clinical medicine. He focuses on leveraging data visualization techniques, RNA-Seq analysis, and genome sequencing for clinical applications. His work emphasizes addressing real-world healthcare challenges, including multidrug-resistance surveillance and comparative genomic analyses.

Conclusion

✨ As a lifelong learner and experienced scientist, Cyruss Tsurgeon is committed to advancing healthcare innovation through data science and clinical research. His blend of expertise, leadership, and passion makes him a key player in the biomedical field, shaping the future of medicine and science.

Publications

Exploring RNA-Seq Data Analysis Through Visualization Techniques and Tools: A Systematic Review of Opportunities and Limitations for Clinical Applications
Bioengineering, 2025-01-12
DOI: 10.3390/bioengineering12010056

A Multidrug-Resistance Surveillance Network: 1 Year On
The Lancet Infectious Diseases, 2012-08
DOI: 10.1016/s1473-3099(12)70149-4

An Intermediate Grade of Finished Genomic Sequence Suitable for Comparative Analyses
Genome Research, 2004-10-12
DOI: 10.1101/gr.2648404

Comparative Analyses of Multi-Species Sequences from Targeted Genomic Regions
Nature, 2003-08-14
DOI: 10.1038/nature01858

 

 

Zari Farhadi | Analytics | Best Researcher Award

Dr. Zari Farhadi | Analytics | Best Researcher Award

Lecturer, University of Tabriz, Iran

Dr. Zari Farhadi is a dedicated lecturer and researcher at the University of Tabriz, Iran, with expertise in Data Science, Machine Learning, and Predictive Modeling. Her passion for academic excellence is evident in her work, particularly in the development of hybrid models to enhance data analysis accuracy. With a Ph.D. in Data Science, she has contributed extensively to advancing predictive models through innovative techniques like ensemble learning and deep regression. 🌟📚

Publication Profile

Google Scholar

Education

Zari Farhadi holds a Ph.D. in Data Science, specializing in machine learning, deep learning, and statistical techniques, from the University of Tabriz. Her academic foundation supports her pioneering work in hybrid machine learning models. 🎓

Experience

As a lecturer and researcher, Dr. Farhadi has contributed to various research papers, focusing on machine learning and deep learning. She teaches at both the Computerized Intelligence Systems Laboratory and the Department of Statistics at the University of Tabriz. Her research experience spans across several high-impact areas of data science, including predictive modeling and statistical learning. 🧑‍🏫

Awards and Honors

Though not currently affiliated with professional organizations, Dr. Farhadi’s work has been recognized in academic circles through the citation of her research in top journals, underlining her growing impact in the field of data science. 🏅

Research Focus

Dr. Farhadi’s research centers on Machine Learning, Predictive Modeling, Ensemble Learning Methods, Statistical Learning, and Hybrid Models like ADeFS, which integrate deep learning with statistical shrinkage methods. She strives to improve model performance in real-world applications, including gold price prediction and real estate valuation. 🤖📊

Conclusion

Zari Farhadi continues to innovate and drive research in the fields of machine learning and data science. Through her groundbreaking work in hybrid models, she is shaping the future of predictive analytics and advancing the boundaries of artificial intelligence in academic and industrial applications. 🌍

Publications

An Ensemble Framework to Improve the Accuracy of Prediction Using Clustered Random-Forest and Shrinkage Methods,
Appl. Sci., vol. 12, no. 20, 2022, doi: 10.3390/app122010608
Cited by: 15 articles.

Improving random forest algorithm by selecting appropriate penalized method
Commun. Stat. Simul. Comput., vol. 0, no. 0, pp. 1–16, 2022, doi: 10.1080/03610918.2022.2150779
Cited by: 10 articles.

ERDeR: The combination of statistical shrinkage methods and ensemble approaches to improve the performance of deep regression,
IEEE Access, DOI: 10.1109/ACCESS.2024.3368067
Cited by: 3 articles.

ADeFS: A deep forest regression-based model to enhance the performance based on LASSO and Elastic Net,
Mathematics and Computer Science, MDPI, 13 (1), 118, 2024.
Cited by: Pending.

Combining Regularization and Dropout Techniques for Deep Convolutional Neural Network,
IEEE Glob. Energy Conf. GEC 2022, pp. 335–339, 2022, doi: 10.1109/GEC55014.2022.9986657
Cited by: 5 articles.

Analysis of Penalized Regression Methods in a Simple Linear Model on the High-Dimensional Data,
American Journal of Theoretical and Applied Statistics, 8 (5), 185, 2019.
Cited by: 2 articles.

An Ensemble-Based Model for Sentiment Analysis of Persian Comments on Instagram Using Deep Learning Algorithms,
IEEE Access, DOI: 10.1109/ACCESS.2024.3473617
Cited by: Pending.

Hybrid Model for Visual Sentiment Classification Using Content-Based Image Retrieval and Multi-Input Convolutional Neural Network,
International Journal of Intelligent Systems (Under review).

 

PETROS PATIAS | Data science | Best Researcher Award

Prof. PETROS PATIAS | Data science | Best Researcher Award

CEO, KIKLO – GEOSPATIAL INFORMATION TECHNOLOGIES P.C., Greece

Prof. Petros Patias is a prominent expert in photogrammetry and remote sensing, serving as Professor and Director at the Laboratory of Photogrammetry & Remote Sensing at Aristotle University of Thessaloniki (AUTH), Greece. A leader in his field, he has held esteemed roles, including Vice Rector at the University of Western Macedonia and former President of the Hellenic Society for Photogrammetry & Remote Sensing. Prof. Patias has made groundbreaking contributions internationally through the ISPRS and CIPA, cementing his legacy as an Honorary President and Fellow of these global scientific communities. His impact continues through extensive research, teaching, and scientific guidance worldwide.

Publication Profile

ORCID

Education 🎓📚

Prof. Patias holds a MEng from Aristotle University (1981), an MSc (1985), and a PhD (1987) in Geodetic Science and Surveying from The Ohio State University, USA. His extensive education laid the foundation for his international recognition and contributions in geospatial sciences.

Experience 🏛️🌍

Prof. Patias has held numerous prestigious academic and leadership roles, such as ex-Chairman of the School of Rural and Surveying Engineering at AUTH, board member of the Department of Urban Planning, and Vice Rector at the University of Western Macedonia. He served as President of the Hellenic Society for Photogrammetry & Remote Sensing and led ISPRS Working Groups and Commissions. His experience extends globally as a Visiting Professor at renowned institutions like TU Delft, ETH Zurich, and Universidad del País Vasco.

Research Focus 🔍🌐

Prof. Patias’s research focuses on photogrammetry, remote sensing, and geospatial sciences, with applications in architectural photogrammetry and urban planning. He collaborates internationally, advising institutions such as ETH Zurich, University of Maine, Politecnico di Milano, and IIT Roorkee, and leads impactful projects through European and National organizations.

Awards and Honors 🏆🌟

Prof. Patias has received numerous honors, including an ISPRS Fellowship (2016) and lifetime honorary presidencies with both CIPA and ISPRS. His leadership contributions have earned him esteemed positions, reflecting his commitment to advancing photogrammetry and remote sensing worldwide.

Publications Top Notes 📝📅

“Aerial Photogrammetry for Urban Planning” (2020) published in Remote Sensing; cited by 48 articles.

“Geospatial Data Applications in Urban Development” (2018) published in Geodetic Science Journal; cited by 32 articles.

“Remote Sensing in Archaeological Mapping” (2017) published in International Journal of Archaeology; cited by 45 articles.

“Photogrammetric Techniques for Heritage Conservation” (2016) published in Heritage Science Review; cited by 60 articles.