sajjad qureshi | Artificial Intelligence Award | Computer Vision Contribution Award

Dr. sajjad qureshi | artificial intelligence award | Computer Vision Contribution Award

deputy Director (IT), multan electric power company, Pakistan

📘 Dr. Sajjad Hussain Qureshi is a seasoned professional with over 21 years of experience in Information Technology. Currently serving as the Deputy Director (IT) at Multan Electric Power Company for the past two decades, Dr. Qureshi has established expertise in system analysis and design, machine learning, cybersecurity, IT auditing, and project management. His multidisciplinary educational background, including a Ph.D. in Computer Science, Ph.D. in Agriculture, and an MBA in Human Resource Management, has enabled him to excel in IT-based quality assurance, data analysis, and human resource management. He is passionate about utilizing cutting-edge technologies to create impactful solutions in diverse domains.

Publication Profile

ORCID

Education

🎓 Dr. Qureshi holds a Ph.D. in Computer Science, a Ph.D. in Agriculture, and an MBA in Human Resource Management. His diverse academic achievements reflect his commitment to integrating IT with interdisciplinary knowledge for impactful research and practical solutions.

Experience

💼 Dr. Qureshi has an extensive career spanning over 21 years in the IT field. For the last 20 years, he has been a cornerstone of the Multan Electric Power Company, where he serves as the Deputy Director (IT). His experience covers IT infrastructure development, LAN networks, client/server environments, cybersecurity, and customer billing systems. He also excels in IT-based quality assurance and control, project management, and data management.

Research Interests

🔍 Dr. Qureshi’s research interests lie at the intersection of machine learning, deep learning, cybersecurity, data management, and agriculture technology. He is particularly interested in applying advanced computational techniques to solve real-world problems, such as disease detection in crops and classification of linguistic data.

Awards

🏆 Dr. Qureshi has been recognized for his contributions to IT and interdisciplinary research, achieving notable academic and professional milestones. His work continues to inspire innovation and collaboration across diverse fields.

Publications

Classification of English Words into Grammatical Notations Using Deep Learning Technique (2024)
Imran, M., Qureshi, S. H., Qureshi, A. H., & Almusharraf, N.
Published in Information, 15(12), 801.
DOI: 10.3390/info15120801

Rational Study Of The Use Of Computer-Aided Softwares By The Composers (2024)
Qureshi, S. H., Javaid, S., & Javaid, M. A.
Published in Pakistan Journal of Society, Education and Language, 10(2), 213–219.

Comparison of Conventional and Computer-Based Detection of Severity Scales of Stalk Rot Disease in Maize (2024)
Qureshi, S.H., Khan, D.M., Razzaq, A., Baig, M.M., & Bukhari, S.Z.A.
Published in SABRAO Journal of Breeding and Genetics, 56(1), 292–301.
DOI: 10.54910/sabrao2024.56.1.26

Intelligent Resistant Source Detection Against Stalk Rot Disease of Maize Using Deep Learning Technique (2023)
Qureshi, S.H., Khan, D.M., & Bukhari, S.Z.
Published in SABRAO Journal of Breeding and Genetics, 55(6), 1972–1983.

Carolina Magalhães | Machine Learning | Best Researcher Award

Dr. Carolina Magalhães | Machine Learning | Best Researcher Award

Investigadora, INEGI – Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial, Portugal

👩‍🔬 Carolina Magalhães is a dedicated biomedical engineer and PhD candidate with expertise in applying AI and imaging technologies to healthcare challenges. Based in Porto, Portugal, she combines her passion for modern technology with a problem-solving mindset to develop innovative solutions in skin cancer diagnostics. Carolina has worked collaboratively with clinical experts to bridge research and practical applications, contributing significantly to advancing imaging-based decision support systems.

Publication Profile

ORCID

Education

🎓 Carolina holds a PhD in Biomedical Engineering from the Faculdade de Engenharia da Universidade do Porto (2020–2024). She also completed her MSc in Biomedical Engineering at the same institution (2016–2018) and earned her Bachelor’s in Bioengineering – Biomedical Engineering from Universidade Católica Portuguesa (2013–2016).

Experience

💼 Carolina has a rich research background, currently serving as a Graduate Research Fellow at INEGI, focusing on skin lesion diagnosis using multispectral imaging. Her work spans from leveraging machine learning models for skin cancer classification to thermal and UV imaging techniques. Previously, she contributed to projects on hyperhidrosis diagnosis, prosthetic device design, and thermal image analysis for musculoskeletal disorders, collaborating with leading hospitals and research centers in Portugal.

Research Interests

🔬 Carolina is passionate about exploring artificial intelligence, machine learning, and advanced imaging technologies for healthcare applications. Her interests include developing multispectral imaging systems, improving diagnostic tools for skin cancer, and advancing infrared thermography for clinical support systems.

Awards

🏆 Carolina’s innovative work has been recognized with prestigious research grants from the Foundation for Science and Technology (SFRH/BD/144906/2019) and other funding organizations. These awards have supported her impactful contributions to biomedical engineering and healthcare innovation.

Publications

“Systematic Review of Deep Learning Techniques in Skin Cancer Detection”
BioMedInformatics, 11/2024
Read here

“Skin Cancer Image Classification with Artificial Intelligence Strategies: A Systematic Review”
Journal of Imaging, 10/2024
Read here

“Use of Infrared Thermography for Abdominoplasty Procedures in Patients with Extensive Subcostal Scars: A Preliminary Analysis”
Plast Reconstr Surg Glob Open, 06/2023
Read here

“Classic Versus Scarpa-Sparing Abdominoplasty: An Infrared Thermographic Comparative Analysis”
J Plast Reconstr Aesthet Surg, 06/2023
Read here

“Towards an Effective Imaging-Based Decision Support System for Skin Cancer”
Handbook of Research on Applied Intelligence for Health and Clinical Informatics, 10/2022
Read here

Sara Tehsin | Deep learning | Best Researcher Award

Ms. Sara Tehsin | Deep learning | Best Researcher Award

PhD Student, National University of Sciences and Technology, Islamabad, Pakistan

Sara Tehsin is a motivated and results-driven professional with over ten years of experience in Image Processing and Machine Learning. As an Engineering Lecturer at HITEC University in Taxila, Pakistan, she excels in delivering high-quality educational experiences and has a proven track record of producing outstanding results through her strong work ethic, adaptability, and effective communication skills. She is passionate about academic development and seeks opportunities to contribute her expertise while furthering her professional growth. 📚💻

Publication Profile

Google Scholar

Education

Sara Tehsin is currently pursuing a PhD in Computer Engineering at the National University of Sciences and Technology (NUST), Islamabad, where she has achieved a remarkable GPA of 3.83/4.00. Her research focuses on Digital Forensics, Deep Learning, and Digital Image Processing. She holds a Master’s degree in Computer Engineering from NUST, where she graduated with a GPA of 3.7/4.0, and a Bachelor’s degree from The Islamia University of Bahawalpur, with a GPA of 3.36/4.00. 🎓🌟

Experience

Sara has extensive teaching experience, currently serving as an Engineering Lecturer at HITEC University since September 2019, where she develops engaging curriculum and delivers lectures aligned with international standards. Previously, she was a Computer Science Lecturer at Sharif College of Engineering and Technology, and she also served as a Teaching Assistant at NUST and a Lab Engineer at Foundation University. Her roles have encompassed curriculum development, practical instruction, and student support in various computer science subjects. 👩‍🏫🔧

Research Interests

Sara’s research interests encompass Digital Forensics, Deep Learning, Digital Image Processing, and Machine Learning. She focuses on developing innovative solutions for image recognition and forgery detection, contributing significantly to the fields of computer vision and machine learning. Her work aims to enhance the accuracy and efficiency of image processing systems. 🧠🔍

Publications

Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition
S. Tehsin, S. Rehman, M.O.B. Saeed, F. Riaz, A. Hassan, M. Abbas, R. Young, …
IEEE Access, 5, 24495-24502 (2017)
Cited by: 21

Improved maximum average correlation height filter with adaptive log base selection for object recognition
S. Tehsin, S. Rehman, A.B. Awan, Q. Chaudry, M. Abbas, R. Young, A. Asif
Optical Pattern Recognition XXVII, 9845, 29-41 (2016)
Cited by: 18

Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments
S. Tehsin, S. Rehman, F. Riaz, O. Saeed, A. Hassan, M. Khan, M.S. Alam
Pattern Recognition and Tracking XXVIII, 10203, 28-39 (2017)
Cited by: 12

Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter
S. Tehsin, S. Rehman, A. Bilal, Q. Chaudry, O. Saeed, M. Abbas, R. Young
Pattern Recognition and Tracking XXVIII, 10203, 22-37 (2017)
Cited by: N/A

Tesfay Gidey | Artificial Intelligence | Best Researcher Award

Dr. Tesfay Gidey | Artificial Intelligence | Best Researcher Award

Lecturer, Addis Ababa Science and Technology University, Ethiopia

Tesfay Gidey Hailu is a highly skilled Information and Communication Engineer and data scientist with a passion for leveraging data to drive innovation and business insights. With expertise in computer science, software engineering, machine learning, and data analytics, he excels in problem-solving, leadership, and technology project management. Tesfay’s work focuses on indoor localization, signal processing, and health data applications, making him a forward-thinking leader in his field. His dedication to continuous learning and delivering actionable results underscores his impressive career in academia and industry. 💼🔧📊

Publication Profile

ORCID

Strengths for the Award:

  1. Diverse Expertise: Tesfay’s expertise spans across critical areas such as signal processing, indoor localization, machine learning, data fusion, and health informatics, aligning well with cutting-edge research areas.
  2. Impressive Academic Qualifications: Holding a Ph.D. in Information and Communication Engineering, along with two MSc degrees, he possesses deep knowledge in interdisciplinary fields.
  3. Research Contributions: He has authored numerous peer-reviewed publications in high-impact journals such as Sensors, Intelligent Information Management, and Journal of Biostatistics. His work in Wi-Fi indoor positioning, predictive modeling, and health informatics shows a broad application of research across industries.
  4. Leadership in Academia: His roles as Associate Dean and Head of Department demonstrate his leadership in driving research, improving curriculum quality, and promoting technology transfer.
  5. Innovative Research Focus: His Ph.D. dissertation on transfer learning for fingerprint-based indoor positioning and various data fusion methods reflect his innovative contributions to solving real-world problems with advanced technologies.

Areas for Improvement:

  1. Broader Industry Impact: While his research is highly academic, incorporating more industry-driven collaborations or commercial applications could strengthen the practical impact of his work.
  2. Public Engagement: Increasing public outreach and collaboration with non-academic sectors or public talks could elevate his visibility and expand the impact of his research findings.
  3. Global Collaboration: Expanding his research collaborations beyond local and regional levels, particularly with international industries, could further showcase the global relevance of his work.

Education 🎓

Tesfay holds a Ph.D. in Information and Communication Engineering from the University of Electronic Science and Technology of China (2023), where his research centered on signal and information processing applied to indoor positioning using machine learning algorithms. He also earned an MSc in Software Engineering from HILCOE School of Computer Science and Information Technology (2018) and an MSc in Health Informatics and Biostatistics from Mekelle University (2013). Additionally, he completed his BSc in Statistics with a minor in Computer Science at Addis Ababa University (2006). 📚💻📈

Experience 💼

Tesfay has held several leadership positions, including Associate Dean at Addis Ababa Science and Technology University (AASTU), where he led research, technology transfer, student recruitment, and faculty training initiatives. He was also the Head of Department and Coordinator at Jimma University, contributing to curriculum enhancement and student retention programs. His experience spans research in manufacturing industries, project management, and academic administration. 🏫📊👨‍🏫

Research Focus 🔬

Tesfay’s research focuses on signal processing, indoor localization, machine learning, data mining, and information fusion. He specializes in developing advanced models for indoor positioning systems, predictive modeling, and statistical quality control, aiming to solve complex problems in health informatics, manufacturing industries, and public health. His work integrates cutting-edge technologies to advance both theoretical and applied fields. 📡📉🤖

Awards and Honors 🏆

Tesfay has been recognized for his contributions to the fields of information and communication engineering and data science. He has received multiple awards and honors for his research and leadership roles in academia, particularly in driving innovative projects that bridge the gap between technology and industry. 🌍🎖️

Publications Highlights 📚

Tesfay has published extensively in top-tier journals, with a focus on indoor positioning systems, data fusion, and health informatics. His research includes the development of novel machine learning models and statistical analysis tools. His works have been widely cited, showcasing his impact in the academic community. 📊✍️

MultiDMet: Designing a Hybrid Multidimensional Metrics Framework to Predictive Modeling for Performance Evaluation and Feature Selection (2023). Intelligent Information Management, 15, 391-425. Cited by 2 articles. Link

Data Fusion Methods for Indoor Positioning Systems Based on Channel State Information Fingerprinting (2022). Sensors, 22, 8720. Cited by 15 articles. Link

Heterogeneous Transfer Learning for Wi-Fi Indoor Positioning Based Hybrid Feature Selection (2022). Sensors, 22, 5840. Cited by 10 articles. Link

OHetTLAL: An Online Transfer Learning Method for Fingerprint-Based Indoor Positioning (2022). Sensors, 22, 9044. Cited by 5 articles. Link

A Multilevel Modeling Analysis of the Determinants and Cross-Regional Variations of HIV Testing in Ethiopia (2016). J Biom Biostat, 7, 277. Cited by 8 articles. Link

Conclusion:

Tesfay Gidey Hailu’s robust academic background, extensive research portfolio, and leadership roles make him a strong candidate for the Best Research Award. His work in signal processing, machine learning, and data-driven innovation in health informatics and communication systems demonstrates a clear commitment to advancing technology and solving societal problems. While his impact could be enhanced by deeper industry collaborations and global outreach, his current achievements already reflect substantial contributions to the field, making him deserving of recognition.

 

Dongbeom Kim | Artificial Intelligence | Best Researcher Award

Mr. Dongbeom Kim | Artificial Intelligence | Best Researcher Award

Master’s Student, University of Seoul, South Korea

Dongbeom Kim is a dedicated Master’s student at the University of Seoul, specializing in Geoinformatics under the mentorship of Professor Chulmin Jun. With a robust academic background in Geography and a passion for innovative research, Dongbeom is actively engaged in developing smart systems for urban planning and vehicle safety. His work spans advanced studies in fire evacuation simulations, the application of artificial intelligence in urban growth modeling, and the development of safe driving systems for two-wheeled vehicles. 📊🛵

Publication Profile

Strengths for the Award:

  1. Academic Background: Dongbeom Kim has a solid educational foundation in Geography and Geoinformatics, with high GPAs in both his undergraduate and current Master’s studies. His ongoing education in Geoinformatics at the University of Seoul under the guidance of a reputed advisor further strengthens his research credentials.
  2. Research Publications: He has authored several papers published in reputable SCIE/ESCI journals like Sensors and Applied Sciences, along with multiple domestic publications. His research spans various topics, including fire evacuation simulations, vehicle safety, and urban growth modeling, indicating a diverse research portfolio.
  3. Conferences and Presentations: Dongbeom Kim has actively presented his research at several international and national conferences, such as the 18th International Conference on Location Based Services in Belgium and the Korean Society for Geospatial Information Science. These experiences highlight his engagement with the academic community and his ability to communicate his research effectively.
  4. Patents and Innovation: He is a co-inventor on four patents related to vehicle safety and route generation, demonstrating innovation and practical application of his research.
  5. Research Projects: Participation in multiple research projects, including those focused on greenhouse gas emission reduction and environmental big data analysis, shows his capability to contribute to significant scientific endeavors.

Areas for Improvement:

  1. Research Leadership: While Dongbeom Kim has collaborated on numerous projects and publications, there is limited evidence of him taking on a leading role in these efforts. Demonstrating more leadership in research projects or publications could strengthen his profile.
  2. Diversity in Research Impact: Although his research covers a range of topics, the majority are closely related to vehicle safety and geospatial data analysis. Expanding his research to cover other areas of geoinformatics or interdisciplinary applications could enhance the breadth of his research impact.
  3. Published Impact Factor: As some of his research is still under review and the impact factors of the journals in which he has published are not mentioned, highlighting the impact factor or citation index of his published work could further substantiate his research quality.

 

Education

Dongbeom holds a Bachelor’s degree in Geography from Kongju National University (2015-2021), achieving a GPA of 3.9/4.5. He is currently pursuing a Master’s degree in Geoinformatics at the University of Seoul, where he has achieved an impressive GPA of 4.33/4.5. 🎓🌍

Experience

Dongbeom’s experience includes multiple research projects, focusing on geospatial information science, urban growth modeling, and traffic safety. He has contributed to several conferences and published numerous peer-reviewed articles in international journals. His practical skills are reinforced by his active involvement in projects such as the development of a good driving evaluation system for two-wheeled vehicles and environmental big data analysis. 🌐📝

Research Focus

Dongbeom’s research primarily revolves around geoinformatics, fire evacuation simulations, urban growth modeling, and traffic safety. He is particularly interested in utilizing sensor-based approaches and artificial intelligence techniques to address urban challenges and enhance public safety. 🚒🌆

Awards and Honors

Dongbeom has presented his work at prestigious international and domestic conferences and has collaborated on innovative projects that have received national attention. He is also recognized for his contributions to patents related to traffic safety and environmental management. 🏆🔬

Publication Top Notes

Under Review: Dongbeom Kim, Hyemin Kim, Yuhan Han, Chulmin Jun, “Fire Evacuation Simulation with Agent-Based Fire Recognition Propagation” (Physica Scripta, 2024)

Dongbeom Kim, Hyemin Kim, Suyun Lee, Qyoung Lee, Minwoo Lee, Jooyoung Lee, Chulmin Jun, “Design and Implementation of a Two-Wheeled Vehicle Safe Driving Evaluation System” (Sensors, 2024) – Cited by 2 articles

Dongbeom Kim, Hyemin Kim, Chulmin Jun, “The Detection of Aggressive Driving Patterns in Two-Wheeled Vehicles Using Sensor-Based Approaches” (Applied Sciences, 2023) – Cited by 3 articles

Minjun Kim, Dongbeom Kim, Daeyoung Jin, Geunhan Kim, “Application of Explainable Artificial Intelligence (XAI) in Urban Growth Modeling: A Case Study of Seoul Metropolitan Area, Korea” (Land, 2023) – Cited by 5 articles

Suyun Lee, Dongbeom Kim, Chulmin Jun, “Calculation of Dangerous Driving Index for Two-Wheeled Vehicles Using the Analytic Hierarchy Process” (Applied Sciences, 2023) – Cited by 1 article

Minjun Kim, Dongbeom Kim, Geunhan Kim, “Examining the Relationship between Land Use/Land Cover (LULC) and Land Surface Temperature (LST) Using Explainable Artificial Intelligence (XAI) Models: A Case Study of Seoul, South Korea” (International Journal of Environmental Research and Public Health, 2022) – Cited by 4 articles 📖🔗

Conclusion:

Dongbeom Kim appears to be a promising candidate for the “Best Researcher Award” due to his solid academic background, active research publication record, involvement in innovative patents, and participation in impactful research projects. To further strengthen his candidacy, he could focus on assuming leadership roles in his research, diversifying his research impact, and emphasizing the citation metrics of his work. Overall, his contributions to the field of geoinformatics and vehicle safety suggest he is a strong contender for this award.

Rahma Mani | Artificial Intelligence | Women Researcher Award

Ms. Rahma Mani | Artificial Intelligence | Women Researcher Award

PhD student, Escuela Técnica Superior de Ingeniería Informática, ETSII, Spain

Rahma Mani is a dedicated Ph.D. candidate in Electrical Engineering and Computer Science at the University of Seville, Spain, with a deep passion for wireless sensor networks, machine learning, and artificial intelligence. With a strong foundation in electrical engineering from the National Engineering School of Monastir, Tunisia, she has demonstrated her expertise through various academic and professional roles. Rahma has contributed to significant research projects and has a keen interest in innovative technologies.

Publication Profile

 

Strengths for the Award:

  1. Academic Excellence: Rahma is currently pursuing a Ph.D. in Electrical Engineering and Computer Science, focusing on cutting-edge fields such as wireless sensor networks, machine learning, and artificial intelligence. Her educational background is robust and well-aligned with emerging technological fields.
  2. Research Contributions: Rahma has multiple publications in reputable journals and conferences, including a submission to the prestigious Pervasive and Mobile Computing Journal by Elsevier. Her research in wireless sensor networks demonstrates innovation and contributes significantly to the field.
  3. Global Perspective: Rahma’s North African upbringing combined with her international academic and professional experiences in Spain, Italy, France, and Tunisia give her a unique global perspective. This diversity enhances her ability to approach problems from different angles, which is a valuable asset in research.
  4. Technical Skills: She possesses a wide range of digital and programming skills, including proficiency in languages like Java, C++, and MATLAB, as well as experience with technologies such as Vivado and Arduino. These skills are critical for her research and development work.
  5. Leadership and Innovation: Rahma demonstrated leadership in her role as the Electrical Committee leader in the ENIM TEAM, where she led the development of an electric car for an international competition. Her involvement in volunteer activities also highlights her leadership abilities and commitment to social causes.
  6. Language Proficiency: Fluent in English, Arabic, and French, with basic Spanish, Rahma’s multilingual capabilities are a significant asset in collaborative international research.

Areas for Improvement:

  1. Broader Research Exposure: While Rahma has a strong publication record, expanding her research impact by collaborating on interdisciplinary projects or participating in more international conferences could further enhance her profile.
  2. Advanced Certifications: Although Rahma has quality management certifications, pursuing advanced certifications related to her research areas (e.g., specialized AI or wireless communication certifications) could strengthen her expertise.
  3. Industry Collaboration: Increasing her engagement with industry partners, beyond internships, through joint research projects or consulting roles could provide practical applications for her research, enhancing its relevance and impact.

 

🎓 Education:

Rahma is currently pursuing her Ph.D. in Electrical Engineering and Computer Science at the University of Seville, Spain, specializing in wireless sensor networks, machine learning, and artificial intelligence. She earned her Electrical Engineering Diploma from the National Engineering School of Monastir, Tunisia, where she also led a team in designing and developing an electric car for an international competition. Rahma began her academic journey with preparatory engineering studies at the Preparatory Institute for Engineering Studies of Monastir, Tunisia.

💼 Experience:

Rahma has gained extensive experience as an adjunct professor at the Higher Institute of Applied Sciences and Technology of Mahdia, Tunisia, where she taught courses on digital signal processing, converters, and electrical machines. She also worked as a Junior Full Stack Engineer at HRDatabank Tunisia (WILL Group, Japan), contributing to the development of HR web applications. Additionally, Rahma has completed internships at Smart Sensors Systems (3S) in Nancy, France, and the Tunisian Electricity and Gas Company in Sousse, Tunisia.

🔬 Research Focus:

Rahma’s research focuses on wireless sensor networks, particularly in the areas of localization algorithms, edge computing, and FPGA-enhanced systems. She is passionate about applying machine learning and artificial intelligence techniques to improve the efficiency and reliability of sensor networks, especially in large-scale and industrial applications.

🏆 Awards and Honors:

Rahma received a merit-based fellowship to pursue her Ph.D. internship in Italy and Spain, recognizing her outstanding academic and research achievements.

📚 Publication Top Notes:

Localizing Unknown Nodes with an FPGA-Enhanced Edge Computing UAV in Wireless Sensor Networks: Implementation and Evaluation (2024)

Improved 3D localization algorithm for large-scale wireless sensor networks (2023).

Improved Distance vector-based Kalman Filter localization algorithm for wireless sensor network (2023) .

CRT-LoRa: An efficient and reliable MAC scheme for real-time industrial applications (2023).

Improved Least-Square DV-Hop Algorithm for Localization in Large Scale Wireless Sensor Network (2022) .

 

Conclusion:

Rahma Mani is a well-qualified candidate for the Research for Women Researcher Award. Her solid academic background, impressive research contributions, technical expertise, and leadership qualities make her a strong contender. With continued focus on expanding her research impact and industry collaborations, she is likely to make significant contributions to the field of Electrical Engineering and Computer Science, particularly in the areas of wireless sensor networks and AI. Her application for the award would be well-justified, showcasing both her achievements and potential for future advancements.

 

 

Shaghaf Kaukab | Technology | Young Scientist Award

Dr. Shaghaf Kaukab | Technology | Young Scientist Award

scientist, ICAR-CIPHET, India

Shaghaf Kaukab is a dedicated Scientist at ICAR-Central Institute of Post-Harvest Engineering & Technology (ICAR-CIPHET), Ludhiana, specializing in Agricultural Structure and Process Engineering. With over 11 years of combined experience in scientific research and academic exploration within the food engineering and technology platform, Shaghaf has made significant contributions to the domain of extrusion processing, storage technology, drying techniques, and functional food product development. His work emphasizes the application of AI, machine learning, and deep learning techniques in agriculture, leading to innovative solutions that improve post-harvest management and food processing.

Publication Profile

Scopus

Strengths for the Award

  1. Research Contributions: Shaghaf Kaukab has made significant contributions to agricultural structure and process engineering, particularly in post-harvest technology. Her work on projects such as IoT-based monitoring systems and AI-enabled robotic harvesters demonstrates her innovative approach and alignment with modern agricultural challenges.
  2. Academic Excellence: With a Ph.D. in Post Harvest Technology and multiple prestigious academic awards, she has a strong academic background. Her high CGPA scores and ICAR merit medals underscore her academic diligence.
  3. Interdisciplinary Expertise: Shaghaf has expertise in various domains, including AI, machine learning, image processing, and food process engineering, making her research impactful and versatile.
  4. Publications and Impact: She has published extensively in refereed journals and contributed to book chapters, highlighting her active involvement in advancing her field of research. The inclusion of her work in high-impact journals reflects her research’s quality and relevance.
  5. Leadership and Collaboration: Shaghaf has demonstrated leadership by managing several projects, mentoring students, and coordinating training programs. Her collaborative efforts with organizations like CDAC and international exposure (e.g., Purdue University) enhance her profile.

Areas for Improvement

  1. Broader Outreach: While Shaghaf has conducted training and outreach activities, expanding these efforts to reach a more diverse audience, including more international platforms, could enhance her influence and recognition.
  2. Grant Acquisition: Although involved in several projects, focusing on securing more independent research grants could further validate her capabilities and drive her research agenda.
  3. Networking and Professional Development: Increased participation in international conferences, workshops, and collaborations outside of India could further her exposure and contribute to professional growth.

 

🎓 Education

Shaghaf Kaukab earned his Ph.D. in Post-Harvest Technology from the Indian Agricultural Research Institute (IARI), New Delhi, with a stellar CGPA of 9.1/10 in 2019. Prior to this, he completed his M.Tech. in Post-Harvest Engineering & Technology from IARI, New Delhi, with a CGPA of 8.97/10 in 2016. His academic journey has been marked by excellence, laying a strong foundation for his research and scientific endeavors.

💼 Experience

Currently, Shaghaf is a Scientist in Agricultural Structures & Process Engineering at ICAR-CIPHET, Ludhiana, where he has been instrumental in the development of technologies such as the stereo-depth based detection and localization module for apples. He has successfully led and contributed to several ongoing projects, including IoT-based modular systems for cold storage and AI-enabled robotic apple harvesters. His role extends to technical writing, project implementation, and collaboration with academic and industrial partners.

🔍 Research Focus

Shaghaf’s research interests lie in the application of new-age technologies like AI, machine learning, and deep learning in the post-harvest agriculture sector. He focuses on image processing techniques (such as Biospeckle, RGB, X-ray, Hyperspectral imaging) and the analysis of food properties (physical, thermal, mechanical, and micro-structural). His work in food process engineering aims to enhance the efficiency and quality of post-harvest processes.

🏆 Awards and Honors

Shaghaf Kaukab’s work has earned him recognition within the scientific community, including membership in prestigious organizations such as the Indian Society of Agricultural Engineers (ISAE) and the American Society of Agricultural and Biological Engineers (ASABE). He serves as a regular reviewer for scientific journals and has been an external examiner for graduate students at Dr. Rajendra Prasad Central Agricultural University, Bihar.

📚 Publication Top Notes

Shaghaf has published numerous articles in refereed journals and contributed to book chapters and training manuals. His notable works include:

Improving Real-time Apple Fruit Detection: Depth and Multi-modal Information Fusions with Non-targeted Background Removal – Published in Ecological Informatics.

Chickpea Temperature Profile Development and its Implication under Microwave Treatment – Published in Biological Forum – An International Journal.

Osmotic Dehydration of Aloe-vera Gel Discs – Published in Journal of AgriSearch.

Engineering Properties, Processing, and Value Addition of Tamarind: A Review – Published in IJBSM.

Study of Engineering Properties of Selected Vegetable Seeds – Published in Indian Journal of Agricultural Sciences.

 

Conclusion

Shaghaf Kaukab is a strong candidate for the Research for Young Scientist Award. Her innovative research, interdisciplinary expertise, and significant contributions to agricultural engineering, particularly in post-harvest technology, make her a standout. While expanding her outreach and securing more independent funding could strengthen her profile further, her accomplishments thus far demonstrate her potential as a leader in her field.

 

Diego Resende Faria | Multisensory AI | Excellence in Research

Assoc Prof Dr. Diego Resende Faria | Multisensory AI | Excellence in Research

Reader in Robotics and Intelligent Adaptive Systems, University of Hertfordshire, United Kingdom

Dr. Diego Resende Faria is a Reader (Associate Professor) in Robotics and Intelligent Adaptive Systems at the University of Hertfordshire, UK. He has been contributing to the field of robotics and intelligent systems since 2022. With extensive experience in human-centered robotics, he has led and participated in various high-profile research projects across Europe. His work focuses on the integration of artificial intelligence in robotics to enhance human-robot interaction and autonomous systems. 🤖🌟

Publication Profile

Strengths for the Award

  1. Research Contributions:
    • Diverse Expertise: Dr. Faria’s research covers a broad range of topics, including cognitive robotics, affective robotics, artificial perception, and autonomous systems. His work on human manipulation, robotic grasping, and human-robot interaction is notable and demonstrates a significant contribution to his field.
    • Project Coordination and Leadership: He has successfully coordinated significant projects such as the EU CHIST-ERA InDex project and the Sim2Real project, showcasing his leadership and ability to manage high-impact research.
    • High-Quality Publications: His publications in well-regarded journals, such as Complexity and the Journal of Social Robotics, indicate a strong research output with relevance and impact in his field.
  2. Funding and Grants:
    • Secured Funding: Dr. Faria has obtained substantial funding for various projects, including EU Horizon projects and industry collaborations. His ability to attract significant grants demonstrates recognition and trust in his research capabilities.
  3. Academic and Professional Roles:
    • Positions of Influence: His roles as a Reader (Associate Professor) and past positions at prestigious institutions like Aston University and the University of Coimbra highlight his academic leadership and influence in robotics and intelligent systems.
  4. Editorial and Review Activities:
    • Journals and Conferences: Dr. Faria’s involvement as a guest editor for several journals and his role in program committees and conference chairs showcase his active participation in shaping the research community.

Areas for Improvement

  1. Broader Impact and Outreach:
    • Public Engagement: While his research is robust, there could be more emphasis on how his work impacts broader societal challenges or contributes to public understanding of robotics and artificial intelligence.
  2. Collaborative Networks:
    • Interdisciplinary Collaborations: Expanding his research to include interdisciplinary collaborations beyond robotics and AI could enhance the application and visibility of his work in other fields.
  3. Recognition and Awards:
    • Professional Awards: Achieving recognition through more prestigious awards or accolades specific to his research area could further validate his contributions and enhance his profile.

Conclusion

Dr. Diego Resende Faria is highly suitable for the “Research for Excellence in Research” award due to his extensive research contributions, leadership in significant projects, and strong publication record. His ability to secure substantial funding and his active involvement in the academic community further strengthen his candidacy. Addressing areas such as public engagement and expanding interdisciplinary collaborations could enhance his impact and recognition even further. Overall, his profile demonstrates a high level of excellence in research, making him a strong candidate for this award.

Education

Dr. Faria earned his Ph.D. in Electrical and Computer Engineering from the University of Coimbra, Portugal, in 2014. His academic journey continued with a postdoctoral fellowship at the Institute of Systems and Robotics, where he specialized in human-centered robotics. 🎓📚

Experience

Before joining the University of Hertfordshire, Dr. Faria was a Lecturer and Senior Lecturer at Aston University, UK, from 2016 to 2022. His career includes leading the EU CHIST-ERA InDex project, which was funded by EPSRC UK, and serving as PI for the Sim2Real project funded by the Royal Society. He is also involved in several industry-linked projects focusing on autonomous vehicles and multimedia retrieval. 🏛️🔬

Research Focus

Dr. Faria’s research interests include Neuro-Affective Intelligence, Cognitive Robotics (including Affective Robotics, Grasping and Dexterous Manipulation, and Human-Robot Interaction), Artificial Perception, Autonomous Systems, and Applied Machine Learning. His work aims to advance the capabilities of robotics in human-centered applications. 🧠🤖📊

Award and honors

Dr. Faria has received recognition for his contributions to robotics and intelligent systems, including significant project funding and accolades from international research bodies. His innovative work in autonomous systems and human-robot interaction has earned him a prominent place in the field. 🏆🔍

Publications Top Notes

  1. A Study on CNN Transfer Learning for Image Classification
  2. A Study on Mental State Classification using EEG-based Brain-Machine Interface
  3. A Probabilistic Approach for Human Everyday Activities Recognition using Body Motion from RGB-D Images
  4. Mental Emotional Sentiment Classification with an EEG-based Brain-Machine Interface
  5. Cross-domain MLP and CNN Transfer Learning for Biological Signal Processing: EEG and EMG

 

Hesham A. Sakr | Artificial Intelligence | Best researcher award

Assist Prof Dr. Hesham A. Sakr | Artificial Intelligence | Best researcher award

Assistant professor, Assistant professor -Nile higher institute of engineering and technology -Mansoura -Egypt

📡 Hesham Ali Sakr is an Assistant Professor and Researcher specializing in Communication Networks and Cybersecurity. He earned his Ph.D. in Electrical, Electronics, and Communications Engineering from Mansoura University, Egypt. Dr. Sakr’s research focuses on optimizing wireless technologies for multimedia services, VoIP systems, and LTE-A networks. His contributions to the field are recognized through multiple publications in prestigious journals. He is actively involved in advancing the state-of-the-art in 5G and beyond communication technologies.

Profile

Google Scholar

 

Education

🎓 Ph.D. in Electrical, Electronics, and Communications Engineering
Mansoura University, Egypt (June 2016 – April 2020)
Thesis: Development of Accessing Multimedia Services over Wireless Technologies
GPA: 3.55/4

🎓 M.Sc. in Electrical, Electronics, and Communications Engineering
Mansoura University, Egypt (June 2010 – September 2014)
Thesis: Development of VoIP Systems using MPLS
GPA: 3.6/4

🎓 B.Sc. in Networks and Communications Engineering
Higher Technological Institute of Engineering, 10th of Ramadan, Egypt (September 2004 – August 2009)
Excellent with Honor Degree (84.9%)
Graduation Project Grade: Excellent

Experience

Specializing in Communication Networks and Cybersecurity, Dr. Sakr has significant academic and research experience. His work primarily focuses on enhancing wireless communication technologies, particularly in the realms of 5G and multimedia services. He has been affiliated with Mansoura University, contributing to various research projects and publications.

Research Interests

Dr. Sakr’s research interests encompass Communication Networks, Cybersecurity, and the development of efficient multimedia services over wireless technologies. His work includes performance evaluation of HARQ mechanisms, IPv6 multimedia management, and power-efficient mechanisms for LTE-A networks. He is particularly focused on optimizing handover management in LTE-A networks and evaluating VoIP versus VoMPLS performance.

Awards

Dr. Hesham Ali Sakr has been recognized for his outstanding contributions to the field of Communication Networks and Cybersecurity. His research achievements and academic excellence have earned him a commendable reputation among peers and colleagues in the industry.

Publications

📚 H.A. Sakr, and M.A. Mohamed, “Performance Evaluation Using Smart: HARQ Versus HARQ Mechanisms Beyond 5G Networks,” Wireless. Pers. Communication (Springer), June 2019. Cited by 26 articles

📚 Abeer Twakol Khalil, A. I. Abdel-Fatah and Hesham Ali Sakr, “Rapidly IPv6 multimedia management schemes based LTE-A wireless networks,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 4, 2018. Cited by 32 articles

📚 H. A. Sakr, A. I. Abdel-Fatah, A. T. Khalil, “Performance Evaluation of Power Efficient Mechanisms on Multimedia over LTE-A Networks,” International Journal on Advanced Science, Engineering and Information Technology (IJASEIT), vol. 9, no. 4, 2019. Cited by 18 articles

📚 H.A. Sakr and M.A. Mohamed, “Handover Management Optimization over LTE-A Network using S1 and X2 handover,” Proc. of The Seventh International Conference on Advances in Computing, Electronics and Communication – ACEC 2018, 2018. Cited by 15 articles

📚 M. Abdel-Azim, M., Awad, M. M., & Sakr, H. A., “VoIP versus VoMPLS Performance Evaluation,” International Journal of Computer Science Issues (IJCSI), 11(1), 2014. Cited by 20 articles