Vijayakumar Ponnusamy | computer science | Best Researcher Award

Prof. Dr. Vijayakumar Ponnusamy | computer science | Best Researcher Award

Professor, SRM IST, India

🎓 Dr. Ponnusamy Vijayakumar, a renowned academician and researcher from India, is currently a Professor in the Department of Electronics and Communication Engineering at SRM University, Kattankulathur, Tamil Nadu. With expertise spanning machine learning, wireless communication, cognitive radio, image processing, signal processing, and biomedical engineering, he has significantly contributed to cutting-edge research and innovation in these domains. A dedicated educator and a lifelong learner, he combines theoretical knowledge with practical applications to inspire the next generation of engineers. 🌟

Publication Profile

ORCID

Strengths for the Award

  1. Extensive Academic Contributions
    • Published 111 research articles in prestigious journals like IEEE Access, Diagnostics, and Electronics. His work demonstrates depth and diversity in fields such as machine learning, wireless communication, cognitive radio, and biomedical signal processing.
    • Recent impactful publications include work on federated machine learning, IoT security, and real-time monitoring, showcasing his expertise in current technological advancements.
  2. Research Grants and Industry Collaboration
    • Secured significant funding for research, including a multi-year grant from the Board of Research in Nuclear Sciences for raw data processing in X-ray baggage inspection systems, and contracts with NI AWR for projects on chaotic communication systems and V2V communication. These achievements highlight his ability to translate research into practical applications.
  3. Professional Recognition and Memberships
    • Active member of IEEE since 2012 and the Indian Science Congress Association since 2008, demonstrating his integration into global and national research communities.
  4. Teaching and Mentorship
    • A Professor at SRM University since 2005, he has contributed significantly to educating and mentoring students in electronics and communication engineering (ECE).
  5. Interdisciplinary Expertise
    • His work spans diverse areas, such as image processing, signal processing, and biomedical applications, reflecting his adaptability and interdisciplinary approach.

Areas for Improvement

  1. International Collaboration
    • While his publications and funding demonstrate significant achievements, more collaboration with international researchers or institutions could enhance the global impact of his work.
  2. Community Engagement and Outreach
    • Greater involvement in organizing or chairing international conferences, workshops, or symposiums could further establish him as a thought leader in his domain.
  3. Patent Portfolio
    • Expanding his research outputs into patented technologies might demonstrate the commercialization potential of his work and further strengthen his profile for awards.

Education

📚 Dr. Vijayakumar has a strong academic foundation, beginning with his B.E. in Electronics and Communication Engineering from the University of Madras (1996–2000). He pursued his M.E. in Applied Electronics at Anna University, Chennai (2003–2006), and later earned his Ph.D. in ECE from SRM University (2012–2018), specializing in advanced technological applications. 🎓

Experience

🔬 Since 2005, Dr. Vijayakumar has been shaping young minds and advancing research as a Professor in the Department of ECE at SRM University, Tamil Nadu. His tenure is marked by numerous successful projects, groundbreaking research, and dedication to excellence in teaching and innovation. 🏫

Research Interests

💡 Dr. Vijayakumar’s research interests are diverse, encompassing machine learning, wireless communication, cognitive radio, image processing, signal processing, and biomedical applications. His multidisciplinary approach has enabled impactful advancements in technology and healthcare. 🌐

Awards

🏆 Dr. Vijayakumar has received significant recognition for his work, securing prestigious grants and contracts, including funding from the Board of Research in Nuclear Sciences (BRNS) for innovative X-ray inspection systems, and collaborations with NI AWR (USA) on V2V communication and chaotic communication systems. His contributions continue to influence academia and industry. 🎖️

Publications

“Real-Time Monitoring and Assessment of Rehabilitation Exercises for Low Back Pain through Interactive Dashboard Pose Analysis Using Streamlit—A Pilot Study”
Electronics, 2024-09-23. DOI: 10.3390/electronics13183782

“Survey on electrocardiography signal analysis and diabetes mellitus: unraveling the complexities and complications”
International Journal of Electrical and Computer Engineering (IJECE), 2024-04-01. DOI: 10.11591/ijece.v14i2.pp1565-1571

“Enhancement of Ambulatory Glucose Profile for Decision Assistance and Treatment Adjustments”
Diagnostics, 2024-02-16. DOI: 10.3390/diagnostics14040436

“An Integrated Federated Machine Learning and Blockchain Framework With Optimal Miner Selection for Reliable DDOS Attack Detection”
IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3413076

“Genetic Algorithm and the Kruskal–Wallis H-Test-Based Trainer Selection Federated Learning for IoT Security”
IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3450836

Conclusion

Dr. Ponnusamy Vijayakumar’s prolific research output, funding achievements, and interdisciplinary expertise make him a strong candidate for the “Best Researcher Award.” His contributions to advancing technology in machine learning, cognitive systems, and biomedical engineering are notable, and his work addresses both academic and industrial challenges. Addressing areas like international collaboration and commercialization could further elevate his candidacy in future awards.

 

Zhizhen Chen | Computer Science | Best Researcher Award

Dr. Zhizhen Chen | Computer Science | Best Researcher Award

Senior Lecturer, University of Greenwich, United Kingdom

🎓 Dr. Zhizhen Chen is a dedicated academic professional serving as a Senior Lecturer in Finance at the University of Greenwich since 2017. With a rich background in finance and economics, Dr. Chen brings extensive experience from both academia and industry. His research interests encompass financial markets, risk management, and financial engineering, contributing significantly to several top-tier finance journals. Dr. Chen is also an active peer reviewer and passionate educator, sharing his expertise through innovative courses like Fintech Banking and Financial Engineering and Machine Learning. 🌍📊

Publication Profile

Scopus

Strengths for the Award:

  1. Research Excellence: Dr. Chen has a strong publication record, with multiple articles published in high-impact journals such as “Journal of International Money and Finance” and “Research in International Business and Finance,” both rated 4* in SJR. This demonstrates his capability in producing high-quality research in the field of finance.
  2. Peer Review Activities: He has been a peer reviewer for several prestigious journals since 2016, which showcases his recognition in the academic community and his commitment to advancing knowledge in finance.
  3. Academic and Professional Credentials: Dr. Chen holds a PhD in Finance, is a Fellow of the Higher Education Academy, and has passed CFA Level 1. This combination of academic qualifications and professional certification adds to his credibility and expertise in the field.
  4. Diverse Teaching Portfolio: His teaching experience spans various finance and economics-related courses, demonstrating versatility and a solid understanding of different areas within the field.
  5. Industry Experience: Dr. Chen’s experience as an Investment Analyst and his work with financial institutions provide him with practical insights, enhancing his academic work’s relevance and applicability.
  6. Continuous Professional Development: His commitment to continuous learning and development is evident through his successful completion of the CFA Level 1 exam and his role in ongoing staff development activities.

Areas for Improvement:

  1. Broader Research Impact: While Dr. Chen has a strong record in finance-specific publications, expanding his research impact across other interdisciplinary areas, such as sustainable finance or fintech, could further enhance his profile.
  2. Leadership Roles in Research: Taking on more leadership roles in research projects or academic committees could strengthen his candidacy by demonstrating his influence beyond his individual contributions.
  3. Grants and Funding: Securing research grants or funding is a notable achievement in academia that is not highlighted in the current profile. Pursuing funding opportunities could bolster his research credentials further.

Education

🎓 Dr. Zhizhen Chen holds a PhD in Finance from the University of Glasgow (2018), demonstrating his strong foundation in financial research and education. He is also a Fellow of the Higher Education Academy (2017), a testament to his commitment to teaching excellence, and he earned an MSc in Economics from the University of Wuhan (2012). 📚✨

Experience

🌟 Dr. Chen’s career spans roles as a Senior Lecturer in Finance at the University of Greenwich since 2017, where he excels in teaching and research. His prior experience includes serving as a Research Assistant and Teaching Assistant at the University of Glasgow, and an Investment Analyst at ICBC Wuhan. This blend of academic and industry roles has equipped him with a unique perspective on finance education. 💼💹

Research Focus

🔍 Dr. Chen’s research is focused on financial markets, risk management, securitization, and financial engineering. He actively contributes as a peer reviewer for prestigious journals, including the Journal of International Financial Markets, Institutions & Money, and Finance Research Letters, ensuring rigorous academic standards in the field. 📑🔬

Awards and Honours

🏅 Dr. Chen was recognized as a Fellow of the Higher Education Academy in 2017, highlighting his dedication to teaching excellence. In addition, he passed the CFA Level 1 exam in 2020, demonstrating his commitment to continuous professional development in finance. 🎖️📈

Publication Top Notes

Lin, W., Yan, W., Chen, Z., Xiao, R. (2023). Research on product appearance patent spatial shape recognition for multi-image feature fusion. Multimedia Tools and Applications (SJR 3*).

Xiao, R., Li, G., Chen, Z. (2023). Research progress and prospect of evolutionary many-objective optimization. Control and Decision.

Chen, Z., Liu, H., Peng, J., Zhang, H., Zhou, M. (2022). Securitization and bank efficiency. In: Ferris, S.P., Kose, J., Makhija, A.K., (eds.) Empirical Research in Banking and Corporate Finance. Emerald Publishing Limited.

Conclusion:

Dr. Zhizhen Chen is a suitable candidate for the “Research for Best Researcher Award” due to his significant contributions to the field of finance through high-quality publications, peer-review activities, and professional development. While there is room for growth in interdisciplinary research and leadership roles, his current achievements and ongoing commitment to both academic and professional excellence make him a compelling contender for the award.

mourad JABRANE | Computer Science | Best Researcher Award

Prof Dr. mourad JABRANE | Computer Science | Best Researcher Award

software enginee, sultan moulay slimane university, Morocco

JABRANE Mourad is a state-certified software engineer and a third-year Ph.D. candidate at the National School of Applied Sciences, Sultan Moulay Slimane University. With a passion for designing scalable and efficient systems, Mourad excels in data mining, machine learning, and distributed computing. As an adjunct professor, he effectively conveys complex concepts, making him a valuable contributor to both academia and industry.

Publication Profile

Strengths for the Award:

  1. Solid Academic Background: Jabrane Mourad holds a state-certified software engineering degree and is currently a Ph.D. candidate specializing in Big Data, showcasing a strong academic foundation in cutting-edge technologies.
  2. Research Contributions: His research work focuses on significant areas like entity resolution in Big Data, machine learning, and distributed computing. His publications in reputable journals, such as the Journal of Intelligent Information Systems and Information Systems, highlight his contributions to the field.
  3. Diverse Skill Set: Mourad has extensive expertise in programming languages (Java, Python, JavaScript, etc.), frameworks (Spring, Angular), and software engineering tools (Docker, Jenkins, Kubernetes), making him a well-rounded researcher with practical skills applicable to various domains.
  4. Teaching Experience: As an adjunct professor, Mourad has taught a wide range of subjects including data integration, advanced Java Enterprise Edition, and distributed systems. His teaching experience demonstrates his ability to communicate complex concepts clearly, which is a valuable trait in academia.
  5. International Recognition: The publication of his work in international journals and his participation in global research projects suggest that his research has gained international recognition, making him a strong candidate for the award.

Areas for Improvement:

  1. Broader Impact: While Mourad’s research contributions are significant, further efforts to collaborate on interdisciplinary projects or engage in community outreach could broaden the impact of his work.
  2. Innovation and Patents: Although he has a strong publication record, obtaining patents or developing innovative software solutions could further strengthen his candidacy for a best researcher award.
  3. Networking and Collaborations: Expanding his network and collaborating with more researchers across different institutions could help him gain more visibility and access to diverse research opportunities.

Education

Ph.D. Candidate (2021 – Present): National School of Applied Sciences, Sultan Moulay Slimane University.
Thesis title: Entity Resolution in Big Data. State Software Engineer (2018 – 2021): National School of Applied Sciences, Sultan Moulay Slimane University. MP Higher School Preparatory Classes (2016 – 2018): Centre Ibn Abdoun.
Track title: Mathematics, Physics, and Engineering Sciences.

Experience 💼

JABRANE Mourad has accumulated significant experience as an adjunct professor at the National School of Applied Sciences, where he has taught a variety of subjects including Data Integration, Data Quality, Advanced JEE, Distributed Systems, Python Programming, MATLAB, and C Programming. His roles extend to both regular courses and continuing education programs, demonstrating his versatility and commitment to teaching.

Research Focus 🔬

Mourad’s research is centered around big data, with specific interests in data mining, machine learning, and distributed computing. His Ph.D. work focuses on Entity Resolution in Big Data, where he is exploring innovative approaches to improve accuracy and efficiency in large-scale data matching.

Awards and Honors 🏅

Though the detailed awards and honors list is not provided, Mourad’s academic and professional journey is marked by his selection as a Ph.D. candidate and his appointment as an adjunct professor at a prestigious institution.

Publications 📚

Mourad has contributed extensively to the field of big data and machine learning. Below are some of his notable publications:

  1. “Erabqs: Entity resolution based on active machine learning and balancing query strategy” – Published in Journal of Intelligent Information Systems, March 2024. Cited by 3 articles.
  2. “Enhancing entity resolution with a hybrid active machine learning framework: Strategies for optimal learning in sparse datasets” – Published in Information Systems, November 2024. Cited by 7 articles.
  3. “Enhancing semantic web entity matching process using transformer neural networks and pre-trained language models” – Published in Computing and Informatics, 2024. Cited by 5 articles.
  4. “Sentiment analysis dataset in Moroccan dialect: Bridging the gap between Arabic and Latin scripted dialect” – Published in Language Resources and Evaluation, July 2024. Cited by 4 articles.

 

Conclusion:

Jabrane Mourad presents a strong case for the Best Researcher Award due to his solid academic background, notable research contributions in Big Data and machine learning, and diverse technical skills. His role as an adjunct professor and his extensive teaching experience further emphasize his ability to convey knowledge and contribute to the academic community. To enhance his candidacy, Mourad could focus on increasing the broader impact of his research through interdisciplinary collaborations and innovation. Overall, Mourad is a well-rounded candidate with the potential to make substantial contributions to the field, making him a suitable contender for the award.

Isabel de la Torre | Computer Science | Women Researcher Award

Prof Dr. Isabel de la Torre | Computer Science | Women Researcher Award

Catedrática, Universidad de Valladolid, Spain

Isabel de la Torre Díez, born in 1979 in Zamora, Spain, is a renowned Full Professor at the University of Valladolid. She received her M.S. and Ph.D. degrees in Telecommunication Engineering from the same university in 2003 and 2010, respectively. Isabel’s expertise lies in telemedicine, e-health, m-health, and related fields. She has authored over 250 papers and played a significant role in numerous research projects. Isabel leads the GTe Research Group and is a key figure in the field of telemedicine and e-health. 🌐👩‍🏫

Publication Profile

 

Strengths for the Award

  1. Significant Research Contributions: Isabel de la Torre Díez has published over 250 papers in SCI journals, peer-reviewed conferences, and books. This extensive publication record highlights her impactful research in telemedicine, e-health, and related fields.
  2. Leadership and Innovation: She leads the GTe Research Group at the University of Valladolid and has been involved in creating and coordinating innovative software. Her leadership in advancing telemedicine and e-health applications demonstrates her commitment to improving healthcare through technology.
  3. Research Impact and Recognition: She has been involved in over 100 international conference program committees and has participated in numerous funded research projects. Her involvement as a reviewer for well-known SCI journals further underscores her expertise and influence in her field.
  4. Research and Teaching Excellence: With two research sexenios, she has demonstrated consistent research excellence. Her role in guiding doctoral theses and her contributions to high-impact journals and conferences reflect her high standing in the academic community.
  5. International Collaboration: Her postdoctoral research experiences in Portugal, Spain, and France highlight her international collaboration and mobility, enhancing her global research network and exposure.

Areas for Improvement

  1. Broader Recognition: While her research is extensive, further highlighting any awards or recognitions she has received could strengthen her application. Emphasizing awards or honors related to her research could enhance her candidacy.
  2. Diversity of Research Interests: While her focus is on telemedicine and e-health, demonstrating how her research contributes to a broader range of applications or interdisciplinary areas might strengthen her profile.
  3. Detailed Impact Metrics: Providing specific metrics, such as citation counts, h-index, and impact factors of the journals where she has published, could offer a clearer picture of her research impact.

Conclusion

Isabel de la Torre Díez is a highly qualified candidate for the Research for Women Researcher Award. Her extensive research contributions, leadership in innovative projects, and active participation in international research communities position her as a leading figure in her field. Enhancing her application with additional recognitions and detailed impact metrics could further bolster her candidacy. Overall, her achievements and ongoing contributions to the field of telemedicine and e-health make her a strong contender for the award.

Education 🎓

Isabel de la Torre Díez earned her M.S. and Ph.D. degrees in Telecommunication Engineering from the University of Valladolid, Spain, in 2003 and 2010, respectively. Her education laid a strong foundation for her prolific career in telemedicine and e-health. 🏫📜

Experience 👩‍💼

Isabel de la Torre Díez is a Full Professor in the Department of Signal Theory and Communications and Telematics Engineering at the University of Valladolid. She has authored over 250 papers and coauthored 16 registered innovative software. Isabel has been involved in more than 100 international conference program committees and has participated in 44 funded research projects. She is also a reviewer for renowned journals like the International Journal of Medical Informatics. 🏫📚

Research Focus 🔬

Isabel’s research focuses on the development and evaluation of telemedicine applications, e-health, m-health, EHRs (Electronic Health Records), machine and deep learning, privacy and security, biosensors, QoS (Quality of Service), and QoE (Quality of Experience) in the health field. She has significantly contributed to these areas, particularly in telepsychiatry, teleophthalmology, and telecardiology. 🧠💻

Awards and Honors 🏆

Isabel de la Torre Díez has received numerous accolades throughout her career. She has two research sexenios and coordinates the GTe Research Group and the GIR “Society of Information” group. She has also been recognized for her contributions as a reviewer for prestigious journals and her leadership in various research projects and collaborations. 🌟🏅

Publications 📄

  1. Novel model to authenticate role-based medical users for blockchain-based IoMT devices
    PLOS ONE
    2024-07-10
    DOI: 10.1371/journal.pone.0304774
  2. A Digital Mental Health Approach for Supporting Suicide Prevention: A Qualitative Study
    International Journal of Mental Health and Addiction
    2024-06-21
    DOI: 10.1007/s11469-024-01347-4
  3. A deep learning approach for Named Entity Recognition in Urdu language
    PLoS ONE
    2024
    DOI: 10.1371/journal.pone.0300725
    Cited by 1 article
  4. A Detectability Analysis of Retinitis Pigmentosa Using Novel SE-ResNet Based Deep Learning Model and Color Fundus Images
    IEEE Access
    2024
    DOI: 10.1109/ACCESS.2024.3367977
    Cited by 1 article

 

GAN XU | Computer Science | Best Researcher Award

Mr. GAN XU | Computer Science | Best Researcher Award

PhD. candidate, capital university of economics and business, China

Xu Gan is a Doctoral student at Capital University of Economics and Business, Beijing, specializing in Rural Finance, Financial Theory and Policy, and Supply Chain Finance. With a solid academic background and practical experience, Xu has contributed significantly to research in financial services and blockchain technology. 🏛️📚

Profile

Scopus

 

Education

Xu Gan completed a Master of Finance from Capital University of Economics and Business in Beijing (2018-2021) and a Bachelor of Biotechnology from Beijing Union University (2006-2010). Xu also has an extensive academic background in these fields, providing a strong foundation for research and analysis. 🎓📈

Experience

Xu has actively participated in several high-profile research projects, including the National Social Science Foundation of China’s research on rural financial services and the China Mobile Communication Federation’s blockchain technology applications in finance. Xu was responsible for designing research sub-topics and writing research reports. 📊🔬

Research Interests

Xu Gan’s research interests include Rural Finance, Financial Theory and Policy, and Supply Chain Finance. Xu is focused on improving rural financial services and exploring innovative financial technologies such as blockchain. 🌾💡

Awards

Xu has been recognized for academic excellence with several honors: Beijing Outstanding Graduates (2020), Outstanding Graduate of Beijing Union University (2020), and several awards for excellent papers at various financial and rural finance forums. 🏅📜

Publications

Yang, GZ., Xu, G., Zhang, Y., et al. Financial density of village banks and income growth of rural residents. Economic Issues, 2021, 504(08): 89-94.

Zhang, F., Xu, G., Zhang, XY, Cheng, X. Knowledge mapping analysis of seven decades of rural finance research in China. Rural Finance Research, 2020(01): 10-20.

Zhang, F., Xu, G., Cheng, X. A review of blockchain applications in the financial sector. Technology for Development, 2019, 15(08): 865-871.

Hafiza Sadia Nawaz | Computer Science | Women Researcher Award

Dr. Hafiza Sadia Nawaz | Computer Science | Women Researcher Award

Shenzhen University, China

🎓 Dr. H. Sadia Nawaz is a distinguished researcher and academic in Computer Vision, with a Ph.D. from Ocean University of China. Her work focuses on Temporal Activity Detection using Natural Language. With a background in both teaching and research, she has contributed significantly to the field of computer vision and continues to pursue a career as a postdoctoral researcher. Her extensive knowledge and dedication to the subject make her a valuable asset to any research group.

Profile

Scopus

 

Education

📚 Dr. H. Sadia Nawaz holds a Ph.D. in Computer Science from Ocean University of China, specializing in Temporal Moment Localization using Natural Language. She also completed her Master’s in Information Science and Technology at the University of Sargodha and an MS in Computer Science and Technology with a focus on Cyber Security at the University of Lahore. Her academic background provides a strong foundation for her research and teaching roles.

Experience

💼 Dr. Nawaz has a robust teaching background, having served as a Programming Teaching Assistant at Heriot-Watt University and Ocean University of China, and as a Computer Science Lecturer at Superior University of Lahore and the University of Sargodha. Her roles in academia have honed her skills in teaching, mentoring, and research, contributing to her expertise in computer vision and machine learning.

Research Interests

🔍 Dr. Nawaz’s research interests include Activity Localization in Videos via Language, Temporal Moment Detection, and Natural Language Processing. She is particularly focused on moment detection in complex scenarios and the integration of machine learning methods with computer vision techniques to enhance video understanding and activity localization.

Awards

🏅 Dr. H. Sadia Nawaz has been recognized for her research contributions in the field of computer vision, particularly for her work on Temporal Moment Localization using Natural Language. Her research has been published in high-impact journals, reflecting her expertise and commitment to advancing the field.

Publications

Temporal Moment Localization via Natural Language by Utilizing Video Question Answers as a Special Variant and Bypassing NLP for Corpora

IVTEN – Integration of Visual-Textual Entities for Temporal Activity Localization via Language in Video

Revelation of Novel Paradigm in Temporal Moment Localization by Using Natural Language in Video

Multi-level Edges and Context Arranger Architecture Using Referencing Expressions for Temporal Moment Localization via Natural Language

A Frame-Based Feature Model for Violence Detection from Surveillance Cameras Using ConvLSTM Network

Tidjani Négadi | Computer Science | Best Researcher Award

Dr. Tidjani Négadi | Computer Science | Best Researcher Award

recently retired, Physics Department, Faculty of Exactand Applied Science, University Oran 1 Ahmed Ben Bella, Oran 31100, Algeria,

📅 Born on January 26, 1950, in Tlemcen, Algeria, Tidjani Négadi is a distinguished Maître de Conférence at the Physics Department, Faculty of Exact and Applied Science, University Oran 1 Ahmed Ben Bella, Oran, Algeria. With a profound interest in theoretical and mathematical biology, Négadi has significantly contributed to various fields, especially in exploring the connections between physics and biological systems.

Profile

Google Scholar

Education

🎓 Tidjani Négadi earned his Doctorat de 3ème Cycle in Nuclear Physics in 1976 and a Doctorat d’Etat Es-Science Physiques in Theoretical Physics in 1988, both from the Institut de Physique Nucléaire IN2P3, Université Claude Bernard Lyon-I, France. His extensive education laid the foundation for his interdisciplinary research spanning nuclear physics, theoretical physics, and mathematical biology.

Experience

💼 Négadi’s academic journey began in 1976, teaching Quantum Mechanics and its applications until 1989. He later taught Atomic and Molecular Physics, and Group Theory until 2002, after which he focused solely on research, particularly in Mathematical Biology. His teaching portfolio also includes Special Relativity, Astronomy, and Astrophysics from 2015 to 2018. His editorial roles and contributions to esteemed journals and conferences highlight his expertise and dedication to advancing scientific knowledge.

Research Interests

🔬 Négadi’s research interests are vast and interdisciplinary, focusing on the mathematical modeling of biological systems, particularly the genetic code. He has explored the symmetries in the genetic code, the use of Fibonacci and Lucas numbers, and the application of quantum-like approaches to biological systems. His work bridges the gap between physics and biology, offering novel insights into genetic information and its underlying structures.

Awards

🏆 Tidjani Négadi’s contributions to science have been recognized with several prestigious awards and honors. He has served as a member of the Executive Board and Advisory Board of the International Symmetry Association (ISA) and the Advisory and Editorial Board of NeuroQuantology. His role as a guest editor for various special issues in prominent journals showcases his leadership in the scientific community.

Publications

1976: Lifetimes of levels in 64Zn from Doppler shift measurements via 61Ni(a,n) 64Zn reaction, Phys. Rev. C13, cited by 10 articles.

1983: On the connection between the hydrogen atom, and the harmonic oscillator, Lett. Nuovo Cimento, cited by 15 articles.

1983: On the connection between the hydrogen atom, and the harmonic oscillator: the continuum case, J. Phys. A16, cited by 12 articles.

1984: Connection between the hydrogen atom, and the harmonic oscillator: the zero-energy case, Phys. Rev. A29, cited by 9 articles.

1984: Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator, Lett. Nuovo Cimento, cited by 7 articles.

HaiTian Chen | Computer Science | Best Researcher Award

Ms. HaiTian Chen | Computer Science | Best Researcher Award

College of Science, North China University of Science and Technology, China

Chen HaiTian is a dedicated researcher in the field of Cyberspace Security from China. Born in December 1998, Chen has made significant strides in federated learning, privacy preservation, and cybersecurity. His contributions span multiple peer-reviewed journals and patents, showcasing his commitment to advancing technology and safeguarding digital spaces.

Profile

ORCID

 

Education

Chen HaiTian holds a major in Cyberspace Security, demonstrating his expertise and focus in this critical area of study. His academic background has equipped him with the skills and knowledge necessary to tackle complex cybersecurity challenges and contribute to innovative solutions in the field. 🎓

Research Interests

Chen HaiTian’s research interests focus on federated learning, privacy preservation, and cybersecurity. He is particularly interested in developing robust aggregation techniques to defend against poisoning attacks in federated learning and exploring personalized fair split learning for resource-constrained Internet of Things (IoT). 🔍

Awards

Chen HaiTian has received recognition for his contributions to software development, including the Huali Academy Backstage Management System V1.0 and the DC Early Warning System V1.0. His work has been registered with computer software registration numbers, showcasing his achievements in developing innovative solutions for network management and security. 🏆

Publications

Chen, H.; Chen, X.; Peng, L. (2023). FLRAM: Robust Aggregation Technique for Defense Against Byzantine Poisoning Attacks in Federated Learning. Electronics. Cited by Electronics.

Chen, H.; Chen, X.; Peng, L. (2024). Personalized Fair Split Learning for Resource-Constrained Internet of Things. Sensors, 24, 88. Cited by Sensors.

Chen, H., Chen, X., Ma R., et al. (2024). A federated learning privacy preserving approach for remote sensing data. Computer Applications. Cited by Computer Applications.

Chen, H., Chen, X. (2023). A Robust Aggregation Technique for Poisoning Attack Defense in Federated Learning. Cited by Journal.

Xu C., Zhang S., Chen H., et al. (2024). A federated learning approach based on adaptive differential privacy and customer selection optimization. Computer Applications. Cited by Computer Applications.

Peng L., Zhang S., Chen H., et al. (2023). Clustered federated learning based on improved CFSFDP algorithm. Journal of North China University of Science and Technology (Natural Science Edition). Cited by NCUST.

Qiang Li | Computer Science | Best Researcher Award

Mr. Qiang Li | Computer Science | Best Researcher Award

Lecturer, Qingdao University, China

Dr. Li Qiang is an experienced lecturer in computer science with a PhD in Engineering. He specializes in high-performance computing and has a strong background in both teaching and research. Committed to fostering academic excellence and technological innovation, Dr. Li has been a dedicated educator and researcher at Qingdao University since 2015.

Profile

ORCID

 

Education 🎓

PhD in Engineering: University of the Chinese Academy of Sciences, Computer Network Information Center (2010-2014), Advisor: Lu Zhonghua. Master’s in Information Science and Engineering: Shandong University of Science and Technology (2007-2010), Advisor: Zhao Maoxian. Bachelor’s in Education: Qingdao University (2003-2007).

Experience 👨‍🏫

Lecturer at Qingdao University, School of Computer Science and Technology (January 2015-Present). Teaching undergraduate and graduate courses in computer science. Supervising student research projects and theses. Conducting research in high-performance computing. Published 12 research papers in journals and conferences. Granted 2 patents.

Research Interests 🔬

Dr. Li Qiang’s research interests lie in high-performance computing, particularly in the optimization and parallel implementation of numerical simulations and the development of new computational frameworks. His work focuses on enhancing computational efficiency and scalability in large-scale scientific computations.

Awards 🏆

Dr. Li Qiang has been recognized for his contributions to the field of high-performance computing through multiple publications and patents. His innovative work has led to advancements in computational methods and has garnered attention in the academic community.

Publications 📄

Optimization Research of Heterogeneous 2D-Parallel Lattice Boltzmann Method Based on Deep Computing Unit. Appl. Sci. 2024, 14, 6078.

Heterogeneous Parallel Implementation of Large-Scale Numerical Simulation of Saint-Venant Equations. Appl. Sci. 2022, 12, 5671. Cited by 6

The Study of Parallelization of SWAT Hydrology Cycle. The 32nd ACM International Conference on Supercomputing, Beijing, 2018. [Cited by 3]

A New Parallel Framework of Distributed SWAT Calibration. Journal of Arid Land, 2015, 7(1): 122-131. [Cited by 7]

Parallel Simulation of High-Dimensional American Option Pricing Based on CPU VS MIC. Concurrency and Computation: Practice and Experience, 2014, 27(5): 1110-1121. [Cited by 5]

Jihyeon Ryu | Computer Science | Best Researcher Award

Assist Prof Dr. Jihyeon Ryu | Computer Science | Best Researcher Award

Professor, Kwangwoon University, South Korea

👩‍🏫 Jihyeon Ryu is an Assistant Professor at the School of Computer and Information Engineering, Kwangwoon University. She specializes in split learning, convolutional neural networks, and user authentication, contributing significantly to the field of computer science with her extensive research and numerous publications.

Profile

Google Scholar

 

Education

Ph.D. in Software (Integrated Master’s and Doctorate Course) from Sungkyunkwan University (Mar. 2018 – Feb. 2023), advised by Prof. Dongho Won and Prof. Hyoungshick Kim. B.S. in Mathematics and Computer Science and Engineering from Sungkyunkwan University (Mar. 2013 – Feb. 2018). Early Graduation from Sejong Science High School (Mar. 2011 – Feb. 2013).

 

Research Interests:

Split Learning. Convolutional Neural Networks. User Authentication

Awards

Family Company Workshop Lecture, Hoseo University (Feb. 2022). Invited Lecturer, Mental Women’s High School (Nov. 2021). Excellence Prize, Software Department Excellence Research Awards (Feb. 2021). Graduate Merit Scholarship, Sungkyunkwan University (Mar. 2018 – Feb. 2021). SimSan Scholarship, Multiple instances (Mar. 2018 – Sep. 2020). Excellence Award, 국가 암호기술 전문인력 양성과정 (Nov. 2019). Grand Prize, Software Department Excellence Research Awards (Feb. 2019). Samsung Science Scholarship (Mar. 2013 – Feb. 2018)

Publications

Lightweight Hash-Based Authentication Protocol for Smart Grids. Sensors, 2024. Sangjin Kook, Keunok Kim, Jihyeon Ryu, Youngsook Lee, Dongho Won.

Enhanced Lightweight Medical Sensor Networks Authentication Scheme Based on Blockchain. IEEE ACCESS, 2024. Taewoong Kang, Naryun Woo, Jihyeon Ryu.

Secure and Anonymous Authentication Scheme for Mobile Edge Computing Environments. IEEE Internet of Things Journal, 2024. Hakjun Lee, Jihyeon Ryu, Dongho Won.

Distributed and Federated Authentication Schemes Based on Updatable Smart Contracts. Electronics, 2023. Keunok Kim, Jihyeon Ryu, Hakjun Lee, Youngsook Lee, Dongho Won.

An Improved Lightweight User Authentication Scheme for the Internet of Medical Things. Sensors, 2023. Keunok Kim, Jihyeon Ryu, Youngsook Lee, Dongho Won.