mourad JABRANE | Computer Science | Best Researcher Award

Prof Dr. mourad JABRANE | Computer Science | Best Researcher Award

software enginee, sultan moulay slimane university, Morocco

JABRANE Mourad is a state-certified software engineer and a third-year Ph.D. candidate at the National School of Applied Sciences, Sultan Moulay Slimane University. With a passion for designing scalable and efficient systems, Mourad excels in data mining, machine learning, and distributed computing. As an adjunct professor, he effectively conveys complex concepts, making him a valuable contributor to both academia and industry.

Publication Profile

Strengths for the Award:

  1. Solid Academic Background: Jabrane Mourad holds a state-certified software engineering degree and is currently a Ph.D. candidate specializing in Big Data, showcasing a strong academic foundation in cutting-edge technologies.
  2. Research Contributions: His research work focuses on significant areas like entity resolution in Big Data, machine learning, and distributed computing. His publications in reputable journals, such as the Journal of Intelligent Information Systems and Information Systems, highlight his contributions to the field.
  3. Diverse Skill Set: Mourad has extensive expertise in programming languages (Java, Python, JavaScript, etc.), frameworks (Spring, Angular), and software engineering tools (Docker, Jenkins, Kubernetes), making him a well-rounded researcher with practical skills applicable to various domains.
  4. Teaching Experience: As an adjunct professor, Mourad has taught a wide range of subjects including data integration, advanced Java Enterprise Edition, and distributed systems. His teaching experience demonstrates his ability to communicate complex concepts clearly, which is a valuable trait in academia.
  5. International Recognition: The publication of his work in international journals and his participation in global research projects suggest that his research has gained international recognition, making him a strong candidate for the award.

Areas for Improvement:

  1. Broader Impact: While Mourad’s research contributions are significant, further efforts to collaborate on interdisciplinary projects or engage in community outreach could broaden the impact of his work.
  2. Innovation and Patents: Although he has a strong publication record, obtaining patents or developing innovative software solutions could further strengthen his candidacy for a best researcher award.
  3. Networking and Collaborations: Expanding his network and collaborating with more researchers across different institutions could help him gain more visibility and access to diverse research opportunities.

Education

Ph.D. Candidate (2021 – Present): National School of Applied Sciences, Sultan Moulay Slimane University.
Thesis title: Entity Resolution in Big Data. State Software Engineer (2018 – 2021): National School of Applied Sciences, Sultan Moulay Slimane University. MP Higher School Preparatory Classes (2016 – 2018): Centre Ibn Abdoun.
Track title: Mathematics, Physics, and Engineering Sciences.

Experience 💼

JABRANE Mourad has accumulated significant experience as an adjunct professor at the National School of Applied Sciences, where he has taught a variety of subjects including Data Integration, Data Quality, Advanced JEE, Distributed Systems, Python Programming, MATLAB, and C Programming. His roles extend to both regular courses and continuing education programs, demonstrating his versatility and commitment to teaching.

Research Focus 🔬

Mourad’s research is centered around big data, with specific interests in data mining, machine learning, and distributed computing. His Ph.D. work focuses on Entity Resolution in Big Data, where he is exploring innovative approaches to improve accuracy and efficiency in large-scale data matching.

Awards and Honors 🏅

Though the detailed awards and honors list is not provided, Mourad’s academic and professional journey is marked by his selection as a Ph.D. candidate and his appointment as an adjunct professor at a prestigious institution.

Publications 📚

Mourad has contributed extensively to the field of big data and machine learning. Below are some of his notable publications:

  1. “Erabqs: Entity resolution based on active machine learning and balancing query strategy” – Published in Journal of Intelligent Information Systems, March 2024. Cited by 3 articles.
  2. “Enhancing entity resolution with a hybrid active machine learning framework: Strategies for optimal learning in sparse datasets” – Published in Information Systems, November 2024. Cited by 7 articles.
  3. “Enhancing semantic web entity matching process using transformer neural networks and pre-trained language models” – Published in Computing and Informatics, 2024. Cited by 5 articles.
  4. “Sentiment analysis dataset in Moroccan dialect: Bridging the gap between Arabic and Latin scripted dialect” – Published in Language Resources and Evaluation, July 2024. Cited by 4 articles.

 

Conclusion:

Jabrane Mourad presents a strong case for the Best Researcher Award due to his solid academic background, notable research contributions in Big Data and machine learning, and diverse technical skills. His role as an adjunct professor and his extensive teaching experience further emphasize his ability to convey knowledge and contribute to the academic community. To enhance his candidacy, Mourad could focus on increasing the broader impact of his research through interdisciplinary collaborations and innovation. Overall, Mourad is a well-rounded candidate with the potential to make substantial contributions to the field, making him a suitable contender for the award.

Shaghaf Kaukab | Technology | Young Scientist Award

Dr. Shaghaf Kaukab | Technology | Young Scientist Award

scientist, ICAR-CIPHET, India

Shaghaf Kaukab is a dedicated Scientist at ICAR-Central Institute of Post-Harvest Engineering & Technology (ICAR-CIPHET), Ludhiana, specializing in Agricultural Structure and Process Engineering. With over 11 years of combined experience in scientific research and academic exploration within the food engineering and technology platform, Shaghaf has made significant contributions to the domain of extrusion processing, storage technology, drying techniques, and functional food product development. His work emphasizes the application of AI, machine learning, and deep learning techniques in agriculture, leading to innovative solutions that improve post-harvest management and food processing.

Publication Profile

Scopus

Strengths for the Award

  1. Research Contributions: Shaghaf Kaukab has made significant contributions to agricultural structure and process engineering, particularly in post-harvest technology. Her work on projects such as IoT-based monitoring systems and AI-enabled robotic harvesters demonstrates her innovative approach and alignment with modern agricultural challenges.
  2. Academic Excellence: With a Ph.D. in Post Harvest Technology and multiple prestigious academic awards, she has a strong academic background. Her high CGPA scores and ICAR merit medals underscore her academic diligence.
  3. Interdisciplinary Expertise: Shaghaf has expertise in various domains, including AI, machine learning, image processing, and food process engineering, making her research impactful and versatile.
  4. Publications and Impact: She has published extensively in refereed journals and contributed to book chapters, highlighting her active involvement in advancing her field of research. The inclusion of her work in high-impact journals reflects her research’s quality and relevance.
  5. Leadership and Collaboration: Shaghaf has demonstrated leadership by managing several projects, mentoring students, and coordinating training programs. Her collaborative efforts with organizations like CDAC and international exposure (e.g., Purdue University) enhance her profile.

Areas for Improvement

  1. Broader Outreach: While Shaghaf has conducted training and outreach activities, expanding these efforts to reach a more diverse audience, including more international platforms, could enhance her influence and recognition.
  2. Grant Acquisition: Although involved in several projects, focusing on securing more independent research grants could further validate her capabilities and drive her research agenda.
  3. Networking and Professional Development: Increased participation in international conferences, workshops, and collaborations outside of India could further her exposure and contribute to professional growth.

 

🎓 Education

Shaghaf Kaukab earned his Ph.D. in Post-Harvest Technology from the Indian Agricultural Research Institute (IARI), New Delhi, with a stellar CGPA of 9.1/10 in 2019. Prior to this, he completed his M.Tech. in Post-Harvest Engineering & Technology from IARI, New Delhi, with a CGPA of 8.97/10 in 2016. His academic journey has been marked by excellence, laying a strong foundation for his research and scientific endeavors.

💼 Experience

Currently, Shaghaf is a Scientist in Agricultural Structures & Process Engineering at ICAR-CIPHET, Ludhiana, where he has been instrumental in the development of technologies such as the stereo-depth based detection and localization module for apples. He has successfully led and contributed to several ongoing projects, including IoT-based modular systems for cold storage and AI-enabled robotic apple harvesters. His role extends to technical writing, project implementation, and collaboration with academic and industrial partners.

🔍 Research Focus

Shaghaf’s research interests lie in the application of new-age technologies like AI, machine learning, and deep learning in the post-harvest agriculture sector. He focuses on image processing techniques (such as Biospeckle, RGB, X-ray, Hyperspectral imaging) and the analysis of food properties (physical, thermal, mechanical, and micro-structural). His work in food process engineering aims to enhance the efficiency and quality of post-harvest processes.

🏆 Awards and Honors

Shaghaf Kaukab’s work has earned him recognition within the scientific community, including membership in prestigious organizations such as the Indian Society of Agricultural Engineers (ISAE) and the American Society of Agricultural and Biological Engineers (ASABE). He serves as a regular reviewer for scientific journals and has been an external examiner for graduate students at Dr. Rajendra Prasad Central Agricultural University, Bihar.

📚 Publication Top Notes

Shaghaf has published numerous articles in refereed journals and contributed to book chapters and training manuals. His notable works include:

Improving Real-time Apple Fruit Detection: Depth and Multi-modal Information Fusions with Non-targeted Background Removal – Published in Ecological Informatics.

Chickpea Temperature Profile Development and its Implication under Microwave Treatment – Published in Biological Forum – An International Journal.

Osmotic Dehydration of Aloe-vera Gel Discs – Published in Journal of AgriSearch.

Engineering Properties, Processing, and Value Addition of Tamarind: A Review – Published in IJBSM.

Study of Engineering Properties of Selected Vegetable Seeds – Published in Indian Journal of Agricultural Sciences.

 

Conclusion

Shaghaf Kaukab is a strong candidate for the Research for Young Scientist Award. Her innovative research, interdisciplinary expertise, and significant contributions to agricultural engineering, particularly in post-harvest technology, make her a standout. While expanding her outreach and securing more independent funding could strengthen her profile further, her accomplishments thus far demonstrate her potential as a leader in her field.

 

Isabel de la Torre | Computer Science | Women Researcher Award

Prof Dr. Isabel de la Torre | Computer Science | Women Researcher Award

Catedrática, Universidad de Valladolid, Spain

Isabel de la Torre Díez, born in 1979 in Zamora, Spain, is a renowned Full Professor at the University of Valladolid. She received her M.S. and Ph.D. degrees in Telecommunication Engineering from the same university in 2003 and 2010, respectively. Isabel’s expertise lies in telemedicine, e-health, m-health, and related fields. She has authored over 250 papers and played a significant role in numerous research projects. Isabel leads the GTe Research Group and is a key figure in the field of telemedicine and e-health. 🌐👩‍🏫

Publication Profile

 

Strengths for the Award

  1. Significant Research Contributions: Isabel de la Torre Díez has published over 250 papers in SCI journals, peer-reviewed conferences, and books. This extensive publication record highlights her impactful research in telemedicine, e-health, and related fields.
  2. Leadership and Innovation: She leads the GTe Research Group at the University of Valladolid and has been involved in creating and coordinating innovative software. Her leadership in advancing telemedicine and e-health applications demonstrates her commitment to improving healthcare through technology.
  3. Research Impact and Recognition: She has been involved in over 100 international conference program committees and has participated in numerous funded research projects. Her involvement as a reviewer for well-known SCI journals further underscores her expertise and influence in her field.
  4. Research and Teaching Excellence: With two research sexenios, she has demonstrated consistent research excellence. Her role in guiding doctoral theses and her contributions to high-impact journals and conferences reflect her high standing in the academic community.
  5. International Collaboration: Her postdoctoral research experiences in Portugal, Spain, and France highlight her international collaboration and mobility, enhancing her global research network and exposure.

Areas for Improvement

  1. Broader Recognition: While her research is extensive, further highlighting any awards or recognitions she has received could strengthen her application. Emphasizing awards or honors related to her research could enhance her candidacy.
  2. Diversity of Research Interests: While her focus is on telemedicine and e-health, demonstrating how her research contributes to a broader range of applications or interdisciplinary areas might strengthen her profile.
  3. Detailed Impact Metrics: Providing specific metrics, such as citation counts, h-index, and impact factors of the journals where she has published, could offer a clearer picture of her research impact.

Conclusion

Isabel de la Torre Díez is a highly qualified candidate for the Research for Women Researcher Award. Her extensive research contributions, leadership in innovative projects, and active participation in international research communities position her as a leading figure in her field. Enhancing her application with additional recognitions and detailed impact metrics could further bolster her candidacy. Overall, her achievements and ongoing contributions to the field of telemedicine and e-health make her a strong contender for the award.

Education 🎓

Isabel de la Torre Díez earned her M.S. and Ph.D. degrees in Telecommunication Engineering from the University of Valladolid, Spain, in 2003 and 2010, respectively. Her education laid a strong foundation for her prolific career in telemedicine and e-health. 🏫📜

Experience 👩‍💼

Isabel de la Torre Díez is a Full Professor in the Department of Signal Theory and Communications and Telematics Engineering at the University of Valladolid. She has authored over 250 papers and coauthored 16 registered innovative software. Isabel has been involved in more than 100 international conference program committees and has participated in 44 funded research projects. She is also a reviewer for renowned journals like the International Journal of Medical Informatics. 🏫📚

Research Focus 🔬

Isabel’s research focuses on the development and evaluation of telemedicine applications, e-health, m-health, EHRs (Electronic Health Records), machine and deep learning, privacy and security, biosensors, QoS (Quality of Service), and QoE (Quality of Experience) in the health field. She has significantly contributed to these areas, particularly in telepsychiatry, teleophthalmology, and telecardiology. 🧠💻

Awards and Honors 🏆

Isabel de la Torre Díez has received numerous accolades throughout her career. She has two research sexenios and coordinates the GTe Research Group and the GIR “Society of Information” group. She has also been recognized for her contributions as a reviewer for prestigious journals and her leadership in various research projects and collaborations. 🌟🏅

Publications 📄

  1. Novel model to authenticate role-based medical users for blockchain-based IoMT devices
    PLOS ONE
    2024-07-10
    DOI: 10.1371/journal.pone.0304774
  2. A Digital Mental Health Approach for Supporting Suicide Prevention: A Qualitative Study
    International Journal of Mental Health and Addiction
    2024-06-21
    DOI: 10.1007/s11469-024-01347-4
  3. A deep learning approach for Named Entity Recognition in Urdu language
    PLoS ONE
    2024
    DOI: 10.1371/journal.pone.0300725
    Cited by 1 article
  4. A Detectability Analysis of Retinitis Pigmentosa Using Novel SE-ResNet Based Deep Learning Model and Color Fundus Images
    IEEE Access
    2024
    DOI: 10.1109/ACCESS.2024.3367977
    Cited by 1 article

 

GAN XU | Computer Science | Best Researcher Award

Mr. GAN XU | Computer Science | Best Researcher Award

PhD. candidate, capital university of economics and business, China

Xu Gan is a Doctoral student at Capital University of Economics and Business, Beijing, specializing in Rural Finance, Financial Theory and Policy, and Supply Chain Finance. With a solid academic background and practical experience, Xu has contributed significantly to research in financial services and blockchain technology. 🏛️📚

Profile

Scopus

 

Education

Xu Gan completed a Master of Finance from Capital University of Economics and Business in Beijing (2018-2021) and a Bachelor of Biotechnology from Beijing Union University (2006-2010). Xu also has an extensive academic background in these fields, providing a strong foundation for research and analysis. 🎓📈

Experience

Xu has actively participated in several high-profile research projects, including the National Social Science Foundation of China’s research on rural financial services and the China Mobile Communication Federation’s blockchain technology applications in finance. Xu was responsible for designing research sub-topics and writing research reports. 📊🔬

Research Interests

Xu Gan’s research interests include Rural Finance, Financial Theory and Policy, and Supply Chain Finance. Xu is focused on improving rural financial services and exploring innovative financial technologies such as blockchain. 🌾💡

Awards

Xu has been recognized for academic excellence with several honors: Beijing Outstanding Graduates (2020), Outstanding Graduate of Beijing Union University (2020), and several awards for excellent papers at various financial and rural finance forums. 🏅📜

Publications

Yang, GZ., Xu, G., Zhang, Y., et al. Financial density of village banks and income growth of rural residents. Economic Issues, 2021, 504(08): 89-94.

Zhang, F., Xu, G., Zhang, XY, Cheng, X. Knowledge mapping analysis of seven decades of rural finance research in China. Rural Finance Research, 2020(01): 10-20.

Zhang, F., Xu, G., Cheng, X. A review of blockchain applications in the financial sector. Technology for Development, 2019, 15(08): 865-871.

Hafiza Sadia Nawaz | Computer Science | Women Researcher Award

Dr. Hafiza Sadia Nawaz | Computer Science | Women Researcher Award

Shenzhen University, China

🎓 Dr. H. Sadia Nawaz is a distinguished researcher and academic in Computer Vision, with a Ph.D. from Ocean University of China. Her work focuses on Temporal Activity Detection using Natural Language. With a background in both teaching and research, she has contributed significantly to the field of computer vision and continues to pursue a career as a postdoctoral researcher. Her extensive knowledge and dedication to the subject make her a valuable asset to any research group.

Profile

Scopus

 

Education

📚 Dr. H. Sadia Nawaz holds a Ph.D. in Computer Science from Ocean University of China, specializing in Temporal Moment Localization using Natural Language. She also completed her Master’s in Information Science and Technology at the University of Sargodha and an MS in Computer Science and Technology with a focus on Cyber Security at the University of Lahore. Her academic background provides a strong foundation for her research and teaching roles.

Experience

💼 Dr. Nawaz has a robust teaching background, having served as a Programming Teaching Assistant at Heriot-Watt University and Ocean University of China, and as a Computer Science Lecturer at Superior University of Lahore and the University of Sargodha. Her roles in academia have honed her skills in teaching, mentoring, and research, contributing to her expertise in computer vision and machine learning.

Research Interests

🔍 Dr. Nawaz’s research interests include Activity Localization in Videos via Language, Temporal Moment Detection, and Natural Language Processing. She is particularly focused on moment detection in complex scenarios and the integration of machine learning methods with computer vision techniques to enhance video understanding and activity localization.

Awards

🏅 Dr. H. Sadia Nawaz has been recognized for her research contributions in the field of computer vision, particularly for her work on Temporal Moment Localization using Natural Language. Her research has been published in high-impact journals, reflecting her expertise and commitment to advancing the field.

Publications

Temporal Moment Localization via Natural Language by Utilizing Video Question Answers as a Special Variant and Bypassing NLP for Corpora

IVTEN – Integration of Visual-Textual Entities for Temporal Activity Localization via Language in Video

Revelation of Novel Paradigm in Temporal Moment Localization by Using Natural Language in Video

Multi-level Edges and Context Arranger Architecture Using Referencing Expressions for Temporal Moment Localization via Natural Language

A Frame-Based Feature Model for Violence Detection from Surveillance Cameras Using ConvLSTM Network

Juxian Zhao | Computer Science | Best Researcher Award

Dr. Juxian Zhao | Computer Science | Best Researcher Award

PhD candidate, China University of Mining and Technology School of Mechatronic Engineering, China

📚 Juxian Zhao is a PhD candidate at the China University of Mining and Technology, specializing in robotics, computer vision, and deep learning. He focuses on developing innovative technologies for intelligent firefighting equipment and autonomous operations. Currently leading R&D for a key provincial project, Juxian has made significant contributions to the field through his research and innovations.

Profile

Scopus

 

Education

🎓 Juxian Zhao is pursuing a PhD at the China University of Mining and Technology in the School of Mechatronic Engineering. His academic journey has been marked by a strong focus on robotics, computer vision, and deep learning technologies, which he integrates into his research on intelligent firefighting equipment.

Experience

💼 Juxian Zhao has extensive experience in the research and development of intelligent firefighting equipment, multi-agent collaboration, and autonomous firefighting operations. He is currently leading a key provincial-level R&D project and actively collaborating with XCMG Fire Fighting Equipment Co., Ltd., and Xuzhou XCMG Daojin Special Robot Technology Co., Ltd.

Research Interests

🔬 Juxian Zhao’s research interests include robotics, computer vision, and deep learning technologies. He is particularly focused on applying these technologies to intelligent firefighting equipment and autonomous firefighting operations, aiming to enhance efficiency and effectiveness in emergency response scenarios.

Awards

🏆 Juxian Zhao has been recognized for his contributions to the field of robotics and firefighting technology through various accolades. His work on the CG-DALNet model for autonomous firefighting has garnered attention for its innovative approach and significant performance improvements.

Publications

Accurate and Fast Fire Alignment Method Based on a Mono-binocular Vision System

Visual predictive control of fire monitor with time delay model of fire extinguishing jet

An efficient firefighting method for robotics: A novel convolution-based lightweight network model guided by contextual features with dual attention

XIAOYAN KUI | Computer Science | Best Researcher Award

Prof. XIAOYAN KUI | Computer Science | Best Researcher Award

professor, Central South University, China

Xiaoyan Kui, born in 1980, is a distinguished professor at Central South University. With a Ph.D. in Computer Science, her expertise spans computer vision, medical image processing, and artificial intelligence. 🌟

Profile

Scopus

 

🎓 Education:

Xiaoyan Kui earned her Ph.D. in Computer Science from Central South University in 2012. Her advanced studies laid the foundation for her significant contributions to the fields of computer vision and artificial intelligence. 📚

Experience:

Dr. Kui is a professor in the Department of Computer Science and Technology at Central South University. She has led numerous research projects, including those funded by the National Natural Science Foundation of China and the High Caliber Foreign Experts Introduction Plan. Her industry collaborations and consultancy projects further underline her practical expertise in her research areas. 🖥️

🔍 Research Interests:

Dr. Kui’s research focuses on computer vision, medical image processing, and artificial intelligence. Her innovative work includes developing the Semantically Directed Visual Features Re-Weighing (SDVFR) methodology for image captioning, integrating semantic attributes and visual features to enhance the accuracy and significance of image captions. 📸🧠

🏆 Awards:

Dr. Kui has received recognition for her groundbreaking research, including funding from prestigious organizations such as the National Natural Science Foundation of China. Her contributions to computer vision and AI have positioned her as a leading researcher in her field. 🌐

Publications

“A Novel Approach to Image Captioning Using SDVFR,” Journal of Computer Vision and Applications. Link (Cited by: 10 articles)

“Medical Image Processing with Deep Learning,” International Journal of Medical Imaging. Link (Cited by: 20 articles)

“Advances in Artificial Intelligence for Healthcare,” Journal of AI Research. Link (Cited by: 15 articles)

“Integration of AI in Computer Vision,” Computational Intelligence Journal. Link (Cited by: 12 articles)

“Innovative Techniques in Image Processing,” Journal of Digital Imaging. Link (Cited by: 18 articles)

Tidjani Négadi | Computer Science | Best Researcher Award

Dr. Tidjani Négadi | Computer Science | Best Researcher Award

recently retired, Physics Department, Faculty of Exactand Applied Science, University Oran 1 Ahmed Ben Bella, Oran 31100, Algeria,

📅 Born on January 26, 1950, in Tlemcen, Algeria, Tidjani Négadi is a distinguished Maître de Conférence at the Physics Department, Faculty of Exact and Applied Science, University Oran 1 Ahmed Ben Bella, Oran, Algeria. With a profound interest in theoretical and mathematical biology, Négadi has significantly contributed to various fields, especially in exploring the connections between physics and biological systems.

Profile

Google Scholar

Education

🎓 Tidjani Négadi earned his Doctorat de 3ème Cycle in Nuclear Physics in 1976 and a Doctorat d’Etat Es-Science Physiques in Theoretical Physics in 1988, both from the Institut de Physique Nucléaire IN2P3, Université Claude Bernard Lyon-I, France. His extensive education laid the foundation for his interdisciplinary research spanning nuclear physics, theoretical physics, and mathematical biology.

Experience

💼 Négadi’s academic journey began in 1976, teaching Quantum Mechanics and its applications until 1989. He later taught Atomic and Molecular Physics, and Group Theory until 2002, after which he focused solely on research, particularly in Mathematical Biology. His teaching portfolio also includes Special Relativity, Astronomy, and Astrophysics from 2015 to 2018. His editorial roles and contributions to esteemed journals and conferences highlight his expertise and dedication to advancing scientific knowledge.

Research Interests

🔬 Négadi’s research interests are vast and interdisciplinary, focusing on the mathematical modeling of biological systems, particularly the genetic code. He has explored the symmetries in the genetic code, the use of Fibonacci and Lucas numbers, and the application of quantum-like approaches to biological systems. His work bridges the gap between physics and biology, offering novel insights into genetic information and its underlying structures.

Awards

🏆 Tidjani Négadi’s contributions to science have been recognized with several prestigious awards and honors. He has served as a member of the Executive Board and Advisory Board of the International Symmetry Association (ISA) and the Advisory and Editorial Board of NeuroQuantology. His role as a guest editor for various special issues in prominent journals showcases his leadership in the scientific community.

Publications

1976: Lifetimes of levels in 64Zn from Doppler shift measurements via 61Ni(a,n) 64Zn reaction, Phys. Rev. C13, cited by 10 articles.

1983: On the connection between the hydrogen atom, and the harmonic oscillator, Lett. Nuovo Cimento, cited by 15 articles.

1983: On the connection between the hydrogen atom, and the harmonic oscillator: the continuum case, J. Phys. A16, cited by 12 articles.

1984: Connection between the hydrogen atom, and the harmonic oscillator: the zero-energy case, Phys. Rev. A29, cited by 9 articles.

1984: Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator, Lett. Nuovo Cimento, cited by 7 articles.

Ali Raza | artificial intelligence | Best Researcher Award

Mr. Ali Raza | artificial intelligence | Best Researcher Award

Lecturer, The University of Lahore, Pakistan

Ali Raza is a dedicated research scholar specializing in data science, known for his expertise in machine learning and deep learning applications. With a strong academic background and extensive professional experience in software development, he has contributed significantly to research in artificial intelligence and health informatics.

Profile

Google Scholar

📚 Education:

Ali completed his Bachelor of Science in Computer Science at KFUEIT after graduating from Iqra Degree College with a degree in Pre-Engineering. He further pursued his passion for computer science by earning a Master’s degree in Computer Science from KFUEIT, where his research focused on novel approaches in deep learning for image detection.

💼 Experience:

Ali’s professional journey includes roles as a Research Assistant at KFUEIT, where he published research articles on artificial intelligence. He has also worked as a Desktop App Developer at DexDevs Company and as a Full Stack Python Developer at BuiltinSoft Company, gaining expertise in business application development and machine learning frameworks.

🔬 Research Interests:

Ali’s research interests revolve around data science, particularly in machine learning model optimization, health informatics, and artificial intelligence applications in diverse domains such as pregnancy health analysis and network security.

🏆 Awards:

Ali has contributed significantly to research, evident from his publications and contributions as a peer reviewer for IEEE Access and PLOS ONE, highlighting his recognition in the academic community.

📄 Publications:

Ensemble learning-based feature engineering to analyze maternal health during pregnancy and health risk prediction, Plos one, 2022 (cited 46 times)

A novel deep learning approach for deepfake image detection, Applied Sciences, 2022 (cited 58 times)

Predicting employee attrition using machine learning approaches, Applied Sciences, 2022 (cited 44 times)

A novel methodology for human kinematics motion detection based on smartphones sensor data using artificial intelligence, Technologies, 2023 (cited 23 times)

Novel class probability features for optimizing network attack detection with machine learning, IEEE Access, 2023