Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Engineering | University of Technology | Iraq

Dr. Mohanned Mohammed Hussein Al-Khafaji is an accomplished researcher and academic leader in production engineering, specializing in intelligent manufacturing systems, laser material processing, neural network modeling, and fuzzy logic control applications. As Dean of the College of Production Engineering and Metallurgy at the University of Technology, Baghdad, his research integrates computational modeling, automation, and artificial intelligence to enhance production efficiency and precision engineering. He has made significant contributions to the development of computer-controlled manufacturing systems, laser-based material processing, and predictive modeling using advanced algorithms. His work on CO₂ laser processing, neural network-based machining analysis, and hybrid intelligent systems has advanced industrial automation and smart manufacturing processes. Dr. Al-Khafaji’s research also explores mechatronics, robotic systems, and additive manufacturing, emphasizing simulation tools like Abaqus, COMSOL Multiphysics, and MATLAB. His scientific output reflects substantial academic influence, with 15 Scopus-indexed documents, 41 citations from 37 documents, and an h-index of 3. On Google Scholar, he has accumulated 125 citations, an h-index of 6, and an i10-index of 4, underscoring his growing impact in engineering research.

Profile

Scopus | ORCID | Google Scholar

Featured Publications

Al-Khafaji, M. M. H., & Hubeatir, K. A. (2021). CO2 laser micro-engraving of PMMA complemented by Taguchi and ANOVA methods. Journal of Physics: Conference Series, 1795(1), 012062.

Al-Khafaji, M. M. H. (2018). Neural network modeling of cutting force and chip thickness ratio for turning aluminum alloy 7075-T6. Al-Khwarizmi Engineering Journal, 14(1), 67–76.

Khayoon, M. A., Hubeatir, K. A., & Al-Khafaji, M. M. (2021). Laser transmission welding is a promising joining technology technique – A recent review. Journal of Physics: Conference Series, 1973(1), 012023.

Momena, T. F. A., Mohammed, M. M. H., & Al-Khafaji, M. M. H. (2023). Smart robot vision for a pick and place robotic system. Engineering and Technology Journal, 40(6), 1–15.

Shaker, F., Al-Khafaji, M., & Hubeatir, K. (2020). Effect of different laser welding parameters on welding strength in polymer transmission welding using semiconductor. Engineering and Technology Journal, 38(5), 761–768.*

Assist. Prof. Dr. Mehtab Alam | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mehtab Alam | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mehtab Alam |Assistant Professor | Delhi University | India

Dr. Mehtab Alam is an accomplished IT professional and academic specializing in Artificial Intelligence (AI), Internet of Things (IoT), Cyber Forensics, and Information Security. His research primarily focuses on developing AI-based smart IoT frameworks for intelligent healthcare systems, with a strong emphasis on predictive modeling, machine learning integration, and cloud-based data analytics. His scholarly contributions demonstrate a multidisciplinary approach combining computer science, data-driven healthcare innovation, and digital transformation. He has explored diverse research areas including smart city technologies, blockchain applications in e-governance, cybersecurity frameworks, and the application of swarm intelligence in network optimization. Dr. Alam has published extensively in reputed international journals and conferences, contributing to advancements in AI-driven sustainable systems and smart healthcare solutions. His works reflect technical depth and practical applicability, addressing modern challenges in digital infrastructure, public health informatics, and secure communication systems. He has authored 15 Scopus-indexed publications, with 30 Scopus citations and an h-index of 4. On Google Scholar, his research has received 256 citations with an h-index of 10 and an i10-index of 11, showcasing his growing academic influence.

Publication Profile

Scopus | ORCID | Google Scholar

Featured Publications

Alam, M., Khan, E. R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). The DIABACARE CLOUD: Predicting diabetes using machine learning. Acta Scientiarum Technology, 46(1).

Alam, M., Khan, I. R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). Smart healthcare: Making medicine intelligent. Journal of Propulsion Technology, 44(3).

Alam, M., Khan, R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). AI for sustainable smart city healthcare. China Petroleum Processing and Petrochemical Technology Catalyst Research, 23(2), 2245–2258.

Ansari, A. A., Narain, L., Prasad, S. N., & Alam, M. (2022). Behaviour of motion of infinitesimal variable mass oblate body in the generalized perturbed circular restricted three-body problem. Italian Journal of Pure and Applied Mathematics, 47, 221–239.

Alam, M., Parveen, S. (2021). Shipment delivery and COVID-19: An Indian context. International Journal of Advanced Engineering Research and Science, 8(8), 145–154.

Cha Joowon | Artificial Intelligence | Best Researcher Award

Mr. Cha Joowon | Artificial Intelligence | Best Researcher Award

Korea Atomic Energy Research Institute | South Korea

Mr. Cha Joowon is a dedicated researcher in the field of artificial intelligence with a particular focus on its application to nuclear energy systems. He is currently part of the Applied Artificial Intelligence Section at the Korea Atomic Energy Research Institute in Daejeon, South Korea, where he contributes to advancing AI-driven solutions for safe and efficient reactor operations. His academic and research journey reflects a strong commitment to combining computer science with nuclear engineering challenges, working on innovative methods to improve decision-making and system reliability within complex technological environments.

Publication Profile

Scopus

Education Background

Mr. Cha Joowon began his academic path in computer engineering at Korea University of Technology and Education, where he developed a strong foundation in computational methods, algorithms, and systems design. After completing his undergraduate studies, he advanced his pursuit of specialized knowledge by enrolling in the integrated M.S.-Ph.D. program at the University of Science and Technology in Daejeon. His focus within this program is artificial intelligence, where he combines theoretical learning with practical applications in the nuclear energy domain, emphasizing innovation in both academic and applied research contexts.

Professional Experience

Building on his academic background, Mr. Cha Joowon joined the Korea Atomic Energy Research Institute in Daejeon, where he works within the Applied Artificial Intelligence Section. His role centers on exploring how artificial intelligence can enhance reactor safety, operational efficiency, and predictive maintenance in nuclear facilities. His current research integrates advanced machine learning and large language models with engineering systems, demonstrating his ability to bridge computational intelligence with real-world industrial applications. This combination of skills reflects both his technical expertise and his ambition to contribute meaningful solutions to complex engineering challenges.

Awards and Honors

While Mr. Cha Joowon is still early in his professional journey, his commitment to excellence and research potential is evident through his academic trajectory and institutional affiliations. His enrollment in a highly competitive integrated doctoral program at the University of Science and Technology highlights his recognition as a promising scholar. Additionally, his affiliation with the Korea Atomic Energy Research Institute places him in an environment of high-level scientific contributions, offering him opportunities to showcase his growing expertise. His ongoing projects signal the potential for future recognition through awards and professional honors.

Research Focus

Mr. Cha Joowon’s research is centered on applying artificial intelligence to nuclear engineering, with particular attention to developing intelligent systems for reactor operation support. His focus includes integrating large language models and advanced computational techniques to enhance operator decision-making, predictive diagnostics, and system optimization. By combining AI innovation with the unique requirements of nuclear technologies, his research aims to provide reliable and practical solutions for the safe and effective operation of reactors. This interdisciplinary approach reflects his dedication to bridging artificial intelligence with one of the most critical areas of energy research.

Publication Notes

  • Large language model agent for nuclear reactor operation assistance
    Published Year: 2025

Conclusion

In summary, Mr. Cha Joowon represents a new generation of researchers working at the intersection of artificial intelligence and nuclear engineering. His academic foundation in computer engineering, advanced studies in AI, and practical contributions at the Korea Atomic Energy Research Institute mark him as an emerging talent with strong potential to shape the future of intelligent nuclear systems. As he continues to publish and contribute to research, his work is expected to influence both academic communities and industrial applications, solidifying his role as a researcher dedicated to innovation and safety in energy technologies.

Xin Gao | Technology | Best Researcher Award

Prof. Xin Gao | Technology | Best Researcher Award

Professor at Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, China

Dr. Xin Gao is a Professor affiliated with the Children’s Hospital of Soochow University, the Suzhou Institute of Biomedical Engineering and Technology (CAS), and Jinan Guoke Medical and Technology Development Co., Ltd. He earned his Ph.D. in Biomedical Engineering from Zhejiang University in 2004 and specializes in precision medicine, intelligent image computing, surgical navigation, and low-dose cone-beam CT. He has published over 120 papers, holds 21 patents, and has led major national and provincial research projects. Recognized through programs such as the CAS Pioneer Hundred Talents and Jiangsu’s 333 Talent Plan, he also plays key roles in national academic and medical device review committees.

Professional Profile

Orcid

🎓 Education Background

Dr. Xin Gao received his Ph.D. in Biomedical Engineering from Zhejiang University, Hangzhou, China, in 2004. He currently serves as a Professor at the Children’s Hospital of Soochow University and is affiliated with the Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, and Jinan Guoke Medical and Technology Development Co., Ltd. His research focuses on precision medicine, intelligent image computing, surgical navigation, and low-dose cone-beam CT. He has published over 120 scientific papers, holds 21 patents, and has led numerous national and provincial projects, earning recognition through several prestigious national talent programs and academic roles.

🏢 Professional Experience

Dr. Xin Gao has extensive professional experience in biomedical engineering and precision medicine. He is a Professor at the Children’s Hospital of Soochow University and holds affiliations with the Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, and Jinan Guoke Medical and Technology Development Co., Ltd. He has led over 20 major research projects, including national key R&D programs and multiple grants from the National Natural Science Foundation of China. With more than 120 published papers and 21 patents, he has made impactful contributions to intelligent imaging, surgical robotics, and low-dose CT technologies in clinical applications.

🏆 Awards and Honors

Dr. Xin Gao has received numerous prestigious awards and honors in recognition of his contributions to biomedical engineering and medical innovation. He was named a Taishan Industry Leading Talent by Shandong Province in 2023 and received the Outstanding Tutor Award from the University of Science and Technology of China in 2021. He is a recipient of the Chinese Academy of Sciences’ “Pioneer Hundred Talents Program” and has been selected for both second- and third-level tiers of Jiangsu Province’s “333 High-Level Talent Training Project.” His accolades also include national and provincial recognitions for leadership in research, education, and innovation.

🔬 Research Focus

Dr. Xin Gao’s research centers on precision medicine, intelligent medical imaging, and minimally invasive diagnostic technologies. He integrates clinical big data—including imaging, genetics, pathology, and biochemistry—with artificial intelligence and data mining to support disease risk prediction, diagnosis, and treatment planning. His work in surgical navigation and robotics aims to enhance accuracy in minimally invasive procedures through advanced imaging and positioning systems. Additionally, he focuses on low-dose cone-beam CT imaging, developing techniques for 3D reconstruction and spectral information analysis. His research bridges fundamental science and practical application, contributing to the advancement of personalized and efficient healthcare solutions.

📚 Top Publications with Details

📄 Peritumoral MRI radiomics features increase the evaluation efficiency for response to chemotherapy in patients with epithelial ovarian cancer 

Year: 2024

📄 Multicenter evaluation of a weakly supervised deep learning model for lymph node diagnosis in rectal cancer at MRI  

Year: 2024

📄 Safety and Efficacy of Cone‑Beam Computed Tomography‑Guided Lung Tumor Localization with a Near‑Infrared Marker: A Retrospective Study of 175 Patients

Year: 2022

📄 Deep learning‑based segmentation of epithelial ovarian cancer on T2‑weighted magnetic resonance images

Year: 2023

📄 Contribution of whole slide imaging‑based deep learning in the assessment of intraoperative and postoperative sections in neuropathology

Year: 2023

📌 Conclusion

Professor Xin Gao is an exceptional candidate for the Best Researcher Award, with an outstanding record in biomedical engineering, precision medicine, and intelligent medical imaging. He has published over 120 scientific papers, including more than 60 SCI-indexed articles in top-tier journals, and holds 21 patents, including a U.S. patent. His leadership in over 21 major national and provincial research projects demonstrates his ability to secure and manage significant scientific funding. Recognized through honors such as the Taishan Industry Leading Talent and CAS Pioneer Hundred Talents Program, he also holds key academic and regulatory roles. His work bridges fundamental research and clinical application, making a substantial impact on healthcare innovation and education.

 

Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Post doctoral research fellow, university of south africa, South Africa.

Dr. Vincent Idah Majanga  is a dynamic and passionate researcher in Artificial Intelligence (AI), with over a decade of impactful experience in developing cutting-edge algorithms to solve complex real-world problems. His primary expertise lies in machine learning, deep learning, neural network optimization, and computer vision—especially for medical imaging and diagnostic tasks. Dr. Majanga is proficient in Python and Java, and his interdisciplinary skills extend to computer-aided diagnostics, simulation and modeling, computer forensics, and networking. A devoted academician and mentor, he has served in teaching and research capacities across renowned institutions in Kenya and South Africa. His current role as a Postdoctoral Researcher at the University of South Africa (UNISA) underlines his continued contributions to AI-driven healthcare solutions and intelligent systems.

Publication Profile

ORCID

📘 Education Background

Dr. Majanga completed his Ph.D. in Computer Science from the University of KwaZulu-Natal  (2018–2022), focusing on dental image segmentation and AI-based diagnostic systems. He holds an MSc in Computer Science from the University of Nairobi (2012–2014), and a BSc in Computer Science (Upper Second Class) from Kabarak University  (2009–2011). He also studied Computer Engineering at Moi University (2005–2008, credit transferred), and attended Nairobi School for his secondary education (2001–2004). His academic foundation forms the bedrock of his AI-driven research innovations.

💼 Professional Experience

Dr. Majanga is currently a Postdoctoral Researcher at UNISA  (Dec 2023–Present), where he works on deep learning, neural networks, transfer learning, and model optimization in image processing. He is also a part-time lecturer at Masinde Muliro University of Science and Technology  since 2022. Previously, he served as an Assistant Lecturer at Laikipia University  (2015–2023), contributing to curriculum development and student supervision. He has also lectured part-time at JKUAT Nakuru Campus, Dedan Kimathi University, and Kabarak University. Across these roles, he has consistently contributed to high-impact teaching, curriculum development, and academic mentorship.

🏆 Awards and Honors

Dr. Majanga has earned recognition through certifications in Research Ethics from the Clinical Trials Centre at The University of Hong Kong 🏅, completing three modules between March and April 2024—Introduction to Research Ethics, Research Ethics Evaluation, and Informed Consent. These certifications affirm his commitment to ethical research standards and responsible conduct in AI healthcare studies.

🔬 Research Focus

Dr. Majanga’s research focuses on Artificial Intelligence applications in medical imaging and diagnostics, with a specialization in deep learning, computer vision, and unsupervised segmentation. His significant contributions include blob detection and component analysis techniques for identifying cancerous lesions and dental caries in radiographs. His Ph.D. research and publications highlight strong applications of active contour models, connected component analysis, and dropout regularization in healthcare AI systems.

📝 Conclusion

Dr. Vincent Idah Majanga is a dedicated AI researcher and academician with a rich educational and professional background that aligns with transformative applications of artificial intelligence in medical diagnostics. His teaching, ethical research approach, and cross-continental academic presence have made him a valuable contributor to the global AI and computer science communities.

📚 Top Publications Highlights

  1. Automatic Blob Detection Method for Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(4), p.364
    🔎 Cited by: 8 articles

  2. Active Contours Connected Component Analysis Segmentation Method of Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(6), p.642
    🔎 Cited by: 5 articles

  3. A Survey of Dental Caries Segmentation and Detection Techniques
    📅 2022 | 📰 The Scientific World Journal, 2022
    🔎 Cited by: 21 articles

  4. Automatic Blob Detection for Dental Caries
    📅 2021 | 📰 Applied Sciences, 11(19), p.9232
    🔎 Cited by: 17 articles

  5. Dental Images’ Segmentation Using Threshold Connected Component Analysis
    📅 2021 | 📰 Computational Intelligence and Neuroscience, 2021
    🔎 Cited by: 12 articles

  6. Dropout Regularization for Automatic Segmented Dental Images
    📅 2021 | 📰 Asian Conference on Intelligent Information and Database Systems, Springer
    🔎 Cited by: 6 articles

  7. A Deep Learning Approach for Automatic Segmentation of Dental Images
    📅 2019 | 📰 MIKE 2019, Springer
    🔎 Cited by: 18 articles

  8. Component Analysis
    📅 2025 | 📰 WIDECOM 2024, Vol. 237, p.139, Springer Nature
    🔎 Cited by: 2 articles

 

Mr. Saurabh Pahune | Generative AI | Best Researcher Award

Mr. Saurabh Pahune | Generative AI | Best Researcher Award

Techncial Architect, Cardinal health, Ohio, United States

Saurabh Pahune (SMIEEE) is a highly skilled business automation analyst and AI/ML researcher with over 11 years of diverse industry and academic experience. He currently serves as a peer reviewer and editorial board member for reputed journals and is frequently invited as a guest speaker on AI/ML-driven supply chain automation. Known for his innovative work in large language models, generative AI, and intelligent systems, he has published several impactful papers and is a Senior Member of the IEEE. His work seamlessly blends technology with business, improving operational efficiency and driving enterprise transformation across healthcare and logistics domains.

Publication Profile

Google Scholar

ORCID

Scopus

🎓 Education Background

Saurabh holds a Master of Science in Electrical and Computer Engineering from the University of Memphis, USA (2016–2019). He earned his M.Tech in VLSI from RTMNU, Nagpur (2013–2015), and a Bachelor of Engineering in Electronics and Telecommunication from SGBAU, Amravati (2009–2013). His strong academic foundation underpins his technical expertise in AI, ML, and supply chain technologies.

💼 Professional Experience

Saurabh is currently leading AI and automation initiatives as an independent researcher and analyst at Tata Consultancy Services and previously at Vivid Technologies. His experience spans roles at Evolent Health, iSkylar Technologies, and the University of Memphis, where he conducted advanced research in intelligent systems. He specializes in LLMOps, GenAI, RPA, NLP, knowledge graphs, and automation frameworks, contributing significantly to process optimization in healthcare and logistics.

🏆 Awards and Honors

As a recognized Senior Member of IEEE, Saurabh has actively contributed as a reviewer for IEEE Transactions and Taylor & Francis journals. He has also earned multiple professional certifications, including IBM Chatbot Builder, Agile Planning, and Advanced RPA Professional by Automation Anywhere, and was awarded the Accredited Project Manager Certification (APRM) by the International Organization for Project Management.

🔬 Research Focus

Saurabh’s research centers around Artificial Intelligence, Machine Learning, Generative AI, Natural Language Processing, and their integration with business systems like supply chain and healthcare automation. His work explores scalable LLMOps, predictive analytics, knowledge graphs, and ontology-driven architectures. With over 100 citations, his contributions continue to shape cutting-edge applications in AI-enhanced business intelligence.

🔚 Conclusion

Saurabh Pahune exemplifies the synergy between research excellence and industry innovation. With strong technical acumen and strategic insight, he contributes to the academic community while driving AI-powered transformation across sectors. His commitment to continuous learning and cross-functional collaboration makes him a standout candidate for advanced research awards and leadership in AI and automation.

📚 Top Publications –Mr. Saurabh Pahune

  1. Several categories of large language models (LLMs): A short survey
    Year: 2023
    Journal: arXiv preprint arXiv:2307.10188
    Cited by: 36
    Co-author(s): M. Chandrasekharan

  2. Accelerating neural network training: A brief review
    Year: 2024
    Journal: Proceedings of the 2024 8th International Conference on Intelligent Systems
    Cited by: 22
    Co-author(s): S. Nokhwal, P. Chilakalapudi, P. Donekal, S. Nokhwal

  3. EMBAU: A novel technique to embed audio data using shuffled frog leaping algorithm
    Year: 2023
    Journal: Proceedings of the 2023 7th International Conference on Intelligent Systems
    Cited by: 21
    Co-author(s): S. Nokhwal, A. Chaudhary

  4. Quantum Generative Adversarial Networks: Bridging Classical and Quantum Realms
    Year: 2024
    Journal: Proceedings of the 2024 8th International Conference on Intelligent Systems
    Cited by: 18
    Co-author(s): S. Nokhwal, A. Chaudhary

  5. Large Language Models and Generative AI’s Expanding Role in Healthcare
    Year: 2024
    Journal: ResearchGate
    Cited by: 12
    Co-author(s): N. Rewatkar

  6. A Brief Overview of How AI Enables Healthcare Sector Rural Development
    Year: 2024
    Journal: ResearchGate
    Cited by: 8
    Co-author(s): S.A. Pahune

  7. The Importance of AI Data Governance in Large Language Models
    Year: 2025
    Journal: Big Data and Cognitive Computing 9(6), 147
    Cited by: 5
    Co-author(s): Z. Akhtar, V. Mandapati, K. Siddique

  8. Investigating the application of quantum-enhanced generative adversarial networks in optimizing supply chain processes
    Year: 2024
    Journal: International Research Journal of Engineering and Technology (IRJET)
    Cited by: 4
    Co-author(s): N. Rewatkar

  9. Cognitive automation in the supply chain: Unleashing the power of RPA vs. GenAI
    Year: 2024
    Journal: ResearchGate
    Cited by: 4
    Co-author(s): N. Rewatkar

  10. Healthcare: A Growing Role for Large Language Models and Generative AI
    Year: 2023
    Journal: International Journal for Research in Applied Science and Engineering
    Cited by: 4
    Co-author(s): N. Rewatkar

 

Assist. Prof. Dr. Joaquim Casaca | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Joaquim Casaca | Artificial Intelligence | Best Researcher Award

Prof, IADE, European University, Portugal

Joaquim António A. Casaca is an accomplished academic and professional in management, specializing in information security and marketing. He currently serves as an Assistant Professor at IADE, European University, Lisbon. Known for his expertise in management and economics, Joaquim has contributed extensively to research in areas such as entrepreneurial competence, marketing, and information security.

Publication Profile

Scopus

ORCID

🎓 Education Background

Joaquim Casaca holds a PhD in Management (2010) from Universidade Lusíada de Lisboa, with a thesis focusing on information security management in Portuguese SMEs. He earned a Master’s in Management (1999) and an MBA (1997) from ISEG – Lisbon School of Economics and Management, University of Lisbon. Additionally, he completed a Postgraduate degree in Information Sciences and Technologies for Organizations (1996) from ISEG, and holds a BSc in Economics (1982) from the same institution.

💼 Professional Experience

Since 2010, Joaquim has been an Assistant Professor at IADE, European University (Lisbon). Previously, he held academic roles at the University of Lisbon and Lusófona University, and financial positions in notable companies such as PT Multimédia, Portugal Telecom, and Companhia Portuguesa Rádio Marconi. His broad experience spans academia, finance, and management consultancy.

🏆 Awards and Honors

Joaquim received the Banco Espírito Santo Award in 1999 at ISEG for his outstanding Master’s thesis. This recognition highlights his early excellence and research capability in management.

🔍 Research Focus

His research interests center on management, information security, entrepreneurial competence, and marketing. Recent work includes studies on game-based learning’s effect on entrepreneurial skills and the role of neuroscience in economics and marketing. Joaquim’s interdisciplinary approach integrates management theory with emerging technologies and consumer behavior.

🔚 Conclusion

With a strong academic foundation and a versatile professional background, Joaquim A. Casaca is a respected figure in management and information security education. His ongoing contributions advance the understanding of how technology and management intersect in organizational contexts.

📚 Top Publications

  • The effect of game-based learning on the development of entrepreneurial competence among higher education students
    Daniel, A. D., Negre, Y., Casaca, J. A., Patricio, R., & Tsvetcoff, R. (2024). Education + Training.
    DOI: 10.1108/ET-10-2023-0448 — Cited by 3 articles

  • Neuroscience Applied to Economics and Marketing: A bibliometric Review of the Literature
    Casaca, J. A. (2024). International Journal of Business Innovation and Research.
    DOI: 10.1504/ijbir.2024.10066189

  • The determinants of non-consumption of disposable plastic: application of an extended theory of planned behaviour
    Casaca, J. A. (2024). International Journal of Business Environment.
    DOI: 10.1504/IJBE.2024.135693

  • Relational Marketing and Customer Satisfaction: A Systematic Literature Review
    Casaca, J. A. (2023). Estudios Gerenciales.
    DOI: 10.18046/j.estger.2023.169.6218

  • Relationship Marketing and Customer Retention – A Systematic Literature Review
    Casaca, J. A. (2023). Studies in Business and Economics.
    DOI: 10.2478/sbe-2023-0044

 

Prof. Tao Ye | AI Accelerator | Best Researcher Award

Prof. Tao Ye | AI Accelerator | Best Researcher Award

Prof, The Chinese University of Hong Kong, China

Dr. Terry Tao Ye is a renowned professor and researcher specializing in electrical and electronic engineering, nanotechnology, and smart sensing systems. Currently affiliated with the School of Science and Engineering at The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), he has made significant contributions to the fields of RFID systems, embedded platforms, and wearable electronics. With a rich career spanning academia and industry, Dr. Ye has played pivotal roles in developing foundational technologies and fostering cutting-edge research in China and internationally. 🌏🔬

Publication Profile

Summary of Suitability for Best Researcher Award – Prof. Tao Ye

Dr. Terry Tao Ye is a prolific researcher and leader with groundbreaking contributions in nanoscience, wearable sensors, and SoC design. His extensive high-impact publications, prestigious grants, and interdisciplinary innovations demonstrate exceptional research excellence and influence, making him highly deserving of the Best Researcher Award.

🎓 Education Background

Dr. Ye holds a Ph.D. in Electrical Engineering from Stanford University, California, USA (1995–2004), where he researched Systems-on-Chip and Embedded Systems under the guidance of Dr. Giovanni De Micheli. He earned his B.Eng. from the Department of Electronic Engineering at Tsinghua University, Beijing, China (1988–1993), solidifying a strong foundation in electronics and communication engineering. 📘🎓

💼 Professional Experience

Dr. Ye has held multiple esteemed academic and industrial positions. He is currently a Professor at CUHK-Shenzhen (2025–present) and also at SUSTech (2018–present). He holds an adjunct professorship at Carnegie Mellon University since 2015 and has served in leadership and professorial roles at Sun Yat-Sen University and the Joint Institute of Engineering with CMU. His industry experience includes significant roles at Impinj Inc. in Seattle, where he led the development of RFID Gen2 standards, and Synopsys Inc., where he pioneered ASIC and EDA tools. His early career also includes roles at the Hong Kong LSCM R&D Center and Silicon Architects, contributing to foundational IC design technologies. 🧑‍🏫💻📡

🏅 Awards and Honors

Dr. Ye has secured over 30 competitive research grants as principal investigator or core member, spanning national, provincial, and institutional levels. Notably, his work has been funded by the National Science Foundation of China (NSFC), the Guangdong Provincial Key-Area R&D Program, and Shenzhen Science and Technology Program. His contributions to RFID, smart sensing, and embedded design have earned him widespread recognition in academia and industry. 🏆📑

🔬 Research Focus

Dr. Ye’s research interests include System-on-Chip design, embedded systems, energy-efficient interconnects, wearable electronics, flexible sensors, and e-textiles. He is currently leading projects on electronic skin, wireless medical devices, and high-frequency signal integrity in textile-based circuits. His interdisciplinary work bridges hardware design, signal processing, and biomedical applications. 🧠⚙️📲

🔚 Conclusion

With an outstanding blend of academic excellence and industrial innovation, Dr. Terry Tao Ye stands as a thought leader in electrical engineering and emerging smart technologies. His contributions to research, education, and global collaboration continue to shape the future of intelligent systems and nanotechnology. 🌟📡🔋

📚 Top Publications with Details

RV-SCNN: A RISC-V Processor With Customized Instruction Set for SNN and CNN Inference Acceleration on Edge Platforms, IEEE TCAD, 2025

Cited by: 12

Optimizing CNN Computation Using RISC-V Custom Instruction Sets for Edge Platforms, IEEE Transactions on Computers, 2024

Cited by: 2

Smartphone administered pulsed radio frequency energy therapy for expedited cutaneous wound healing, npj Digital Medicine, 2025

Cited by: 51
Polyelectrolyte-based wireless and drift-free iontronic sensors for orthodontic sensing, Science Advances, 2025

Cited by: 4

Parasitic Capacitance Modeling and Measurements of Conductive Yarns for e-Textile Devices, Nature Communications, 2023

Cited by: 8

Exploring RFID Technology for Wireless Control of Smart Antennas”, IEEE Internet of Things Journal, 2024

Cited by: 24

e-Bandage: Exploiting Smartphone as a Therapeutic Device for Cutaneous Wound Treatment”, Advanced Intelligent Systems, 2024

Cited by: 39

Prof. Daniela BURUIANA | Computer Science | Best Researcher Award

Prof. Daniela BURUIANA | Computer Science | Best Researcher Award

Vice-rector, Dunarea de Jos University of Galati, Romania

Prof. Dr. Buruiana Daniela Laura is a prominent academic leader and innovative researcher currently serving as the Vice-Rector at Dunarea de Jos University of Galati . With over two decades of experience in industrial and materials engineering, she holds two habilitations—one in Industrial Engineering and another in Materials Engineering. She leads multiple interdisciplinary initiatives and is the Head of the Department of Materials and Environmental Engineering and the Interdisciplinary Research Centre in Eco-Nano Technology and Advanced Materials (CC-ITI). Her prolific contributions include over 40 ISI-indexed publications, six patents, and leadership in 18 national and international research projects, establishing her as a vital contributor to the advancement of eco-innovative and sustainable technologies 🌱.

Publication Profile

🎓 Education Background

Prof. Buruiana has completed her doctoral studies in Engineering, specializing in the domains of materials and industrial engineering 🏗️. She later earned two habilitations—significant academic milestones that qualify her as a doctoral advisor and research leader in both Industrial Engineering and Materials Engineering. Her academic formation has been deeply rooted in sustainability, biomaterials, and the valorization of industrial and biomedical waste, reflecting her interdisciplinary educational trajectory.

💼 Professional Experience

Currently serving as Vice-Rector, she has held several pivotal academic and research leadership roles, including Head of the Department of Materials and Environmental Engineering since 2020 and Director of CC-ITI. She has directed over 10 competitive research projects, collaborated with global institutions like the University of Burgos (Spain), Universidade de Estado do Rio de Janeiro (Brazil), and The University of Sheffield (UK) 🌍. Her consultancy experience spans five industrial projects, further bridging academia with industry applications. With 14 books published, she also demonstrates a strong commitment to education and scientific communication 📚.

🏅 Awards and Honors

Prof. Buruiana has been honored with 17 awards at conferences and scientific projects, recognizing her innovative research contributions 🏆. She is an active member of the Romanian Society of Biomaterials, the National Register of Teaching Staff Evaluators, and the Romanian Environmental Association. Furthermore, she serves on the Certification Commission for Environmental Study Elaborators and contributes to national education standards through ARACIS. Her professional stature continues to rise due to her impactful research and dedication to excellence.

🔍 Research Focus

Her main research areas include materials engineering, environmental protection, biomaterials, circular economy, and the valorization of waste 🌐. She has significantly contributed to the understanding of eco-friendly nanomaterials and corrosion resistance in harsh environments, while also exploring biomaterial applications for sustainability and CO₂ sequestration. Under her guidance, many young researchers are being trained to implement advanced materials and environmental solutions at an industrial level 🧪.

🧾 Conclusion

Prof. Dr. Daniela Laura Buruiana is a distinguished scholar whose groundbreaking research in industrial and environmental engineering continues to influence scientific innovation and sustainable development worldwide 🌟. Her dynamic leadership, dedication to education, and international collaborations make her a deserving candidate for the Best Researcher Award 🥇.

📚 Top Notable Publications

Evaluating the Impact of Artificial Saliva Formulations on Stainless Steel Integrity (2025) – Applied Sciences
📈 Cited by: 2 articles (Crossref)

Assessment of the Effectiveness of Protective Coatings in Preventing Steel Corrosion in the Marine Environment (2025) – Polymers
📈 Cited by: 3 articles (Crossref)

Advanced Recycling of Modified EDPM Rubber in Bituminous Asphalt Paving (2024) – Buildings
📈 Cited by: 4 articles (Web of Science)

Corrosion Tendency of S235 Steel in 3.5% NaCl Solution and Drinking Water During Six Months of Exposure (2024) – Materials
📈 Cited by: 1 article (Crossref)

Detection of Reed Using CNN Method and Analysis of the Dry Reed (Phragmites Australis) for a Sustainable Lake Area (2023) – Plant Methods
📈 Cited by: 6 articles (Scopus)

Dr. Zeynep Ilkilic Aytac | Artificial Intelligence | Best Researcher Award

Dr. Zeynep Ilkilic Aytac | Artificial Intelligence | Best Researcher Award

Dr Lecturer, Ondokuzmayıs University, Turkey

Dr. Zeynep Ilkilic Aytac is a dynamic and innovative academician serving as a Lecturer at Ondokuz Mayıs University, Yeşilyurt Demir Çelik Vocational School, Department of Mechatronics 🏫. With over eight years of teaching experience, she has contributed significantly to interdisciplinary research that merges mechatronics, artificial intelligence 🤖, and sustainable technologies 🌱. Her strong academic foundation and passion for practical innovation enable her to mentor engineering students while advancing the frontiers of medical diagnostics and control systems. She is widely recognized for her work in MEMS gyroscope control, CNN-based cancer detection, and emission modeling using AI.

Publication Profile

🎓 Education Background

Dr. Aytac earned her BSc, MSc, and PhD degrees in Mechatronics Engineering from Fırat University, Turkey . Her academic journey showcases a strong foundation in mechanical-electrical integration, AI-driven design, and intelligent control systems. Her doctoral research focused on developing robust control strategies for MEMS gyroscopes, laying the groundwork for her multifaceted research career.

💼 Professional Experience

Currently a Lecturer at Ondokuz Mayıs University, Dr. Aytac brings over eight years of higher education teaching and project supervision experience. She has led various academic initiatives and research projects that combine engineering principles with AI and sustainability 🌐. Her interdisciplinary projects have strengthened both academic and industry collaborations, reflecting her commitment to applied research and impactful innovation.

🏅 Awards and Honors

Dr. Aytac has gained recognition for her research through publication in reputable international journals and conference proceedings 🏆. Although specific awards are not listed, her extensive interdisciplinary contributions and active role in innovation-driven education suggest an academic career marked by peer respect and institutional acknowledgment.

🔬 Research Focus

Her research interests lie in the robust control of MEMS gyroscopes, artificial intelligence in medical imaging 🧠, and emission prediction from internal combustion systems using neural networks. She has also focused on CNN-based thyroid cancer detection, leveraging hybrid metaheuristic optimization algorithms like COOT, GWO, PSO, and CMA-ES. Her contributions uniquely combine mechatronics, control theory, deep learning, and sustainability for real-world applications across engineering and healthcare.

🧩 Conclusion

Dr. Zeynep Ilkilic Aytac exemplifies the spirit of modern engineering innovation—bridging theoretical knowledge with hands-on impact. Her work continues to shape the convergence of control systems, AI, and biomedical diagnostics, enriching both academic fields and practical industries 🔧🧬. Through dedicated teaching, collaborative research, and a commitment to sustainable technology, she inspires the next generation of engineers and scientists.

📚 Top Publications 

AI-Based Emission Prediction Using Artificial Neural Networks Optimized by CMA-ES Algorithm.
Journal: Energy Reports, Year: 2022
Cited by: 24 articles

Robust Control of MEMS Gyroscopes Using Adaptive Sliding Mode Techniques.
Journal: Microsystem Technologies, Year: 2021
Cited by: 17 articles

Deep CNN Optimization for Thyroid Cancer Detection Using GWO and PSO.
Journal: Sensors, Year: 2023
Cited by: 12 articles

Hybrid AI Approaches in Digital Pathology: A CNN-Based Study.
Journal: IEEE Access, Year: 2022
Cited by: 9 articles

 Metaheuristic Optimization in CNNs for Histopathological Image Classification.
Journal: Expert Systems with Applications, Year: 2023
Cited by: 7 articles